@article{KupferBauervanRoesteletal.2022, author = {Kupfer, Thomas and Bauer, Evan B. and van Roestel, Jan and Bellm, Eric C. and Bildsten, Lars and Fuller, Jim and Prince, Thomas A. and Heber, Ulrich and Geier, Stephan and Green, Matthew J. and Kulkarni, Shrinivas R. and Bloemen, Steven and Laher, Russ R. and Rusholme, Ben and Schneider, David}, title = {Discovery of a Double-detonation Thermonuclear Supernova Progenitor}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, volume = {925}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics ; Part 2, Letters}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2041-8205}, doi = {10.3847/2041-8213/ac48f1}, pages = {10}, year = {2022}, abstract = {We present the discovery of a new double-detonation progenitor system consisting of a hot subdwarf B (sdB) binary with a white dwarf companion with a P (orb) = 76.34179(2) minutes orbital period. Spectroscopic observations are consistent with an sdB star during helium core burning residing on the extreme horizontal branch. Chimera light curves are dominated by ellipsoidal deformation of the sdB star and a weak eclipse of the companion white dwarf. Combining spectroscopic and light curve fits, we find a low-mass sdB star, M (sdB) = 0.383 +/- 0.028 M (circle dot) with a massive white dwarf companion, M (WD) = 0.725 +/- 0.026 M (circle dot). From the eclipses we find a blackbody temperature for the white dwarf of 26,800 K resulting in a cooling age of approximate to 25 Myr whereas our MESA model predicts an sdB age of approximate to 170 Myr. We conclude that the sdB formed first through stable mass transfer followed by a common envelope which led to the formation of the white dwarf companion approximate to 25 Myr ago. Using the MESA stellar evolutionary code we find that the sdB star will start mass transfer in approximate to 6 Myr and in approximate to 60 Myr the white dwarf will reach a total mass of 0.92 M (circle dot) with a thick helium layer of 0.17 M (circle dot). This will lead to a detonation that will likely destroy the white dwarf in a peculiar thermonuclear supernova. PTF1 J2238+7430 is only the second confirmed candidate for a double-detonation thermonuclear supernova. Using both systems we estimate that at least approximate to 1\% of white dwarf thermonuclear supernovae originate from sdB+WD binaries with thick helium layers, consistent with the small number of observed peculiar thermonuclear explosions.}, language = {en} } @article{JaiserAkperovTimazhevetal.2023, author = {Jaiser, Ralf and Akperov, Mirseid and Timazhev, A. and Romanowsky, Erik and Handorf, D{\"o}rthe and Mokhov, I. I.}, title = {Linkages between arctic and mid-latitude weather and climate}, series = {Meteorologische Zeitschrift}, volume = {32}, journal = {Meteorologische Zeitschrift}, number = {3}, publisher = {Schweizerbart}, address = {Stuttgart}, issn = {0941-2948}, doi = {10.1127/metz/2023/1154}, pages = {173 -- 194}, year = {2023}, abstract = {The study addresses the question, if observed changes in terms of Arctic-midlatitude linkages during winter are driven by Arctic Sea ice decline alone or if the increase of global sea surface temperatures plays an additional role. We compare atmosphere-only model experiments with ECHAM6 to ERA-Interim Reanalysis data. The model sensitivity experiment is implemented as a set of four combinations of sea ice and sea surface temperature boundary conditions. Atmospheric circulation regimes are determined and evaluated in terms of their cyclone and blocking characteristics and changes in frequency during winter. As a prerequisite, ECHAM6 reproduces general features of circulation regimes very well. Tropospheric changes induced by the change of boundary conditions are revealed and further impacts on the large-scale circulation up into the stratosphere are investigated. In early winter, the observed increase of atmospheric blocking in the region between Scandinavia and the Urals are primarily related to the changes in sea surface temperatures. During late winter, we f nd a weakened polar stratospheric vortex in the reanalysis that further impacts the troposphere. In the model sensitivity study a climatologically weakened polar vortex occurs only if sea ice is reduced and sea surface temperatures are increased together. This response is delayed compared to the reanalysis. The tropospheric response during late winter is inconclusive in the model, which is potentially related to the weak and delayed response in the stratosphere. The model experiments do not reproduce the connection between early and late winter as interpreted from the reanalysis. Potentially explaining this mismatch, we identify a discrepancy of ECHAM6 to reproduce the weakening of the stratospheric polar vortex through blocking induced upward propagation of planetary waves.}, language = {en} } @article{DiBelloHartmannMajumdaretal.2023, author = {Di Bello, Costantino and Hartmann, Alexander K. and Majumdar, Satya N. and Mori, Francesco and Rosso, Alberto and Schehr, Gregory}, title = {Current fluctuations in stochastically resetting particle systems}, series = {Physical review : E, Statistical, nonlinear and soft matter physics}, volume = {108}, journal = {Physical review : E, Statistical, nonlinear and soft matter physics}, number = {1}, publisher = {American Physical Society}, address = {College Park}, issn = {2470-0045}, doi = {10.1103/PhysRevE.108.014112}, pages = {18}, year = {2023}, abstract = {We consider a system of noninteracting particles on a line with initial positions distributed uniformly with density ? on the negative half-line. We consider two different models: (i) Each particle performs independent Brownian motion with stochastic resetting to its initial position with rate r and (ii) each particle performs run -and-tumble motion, and with rate r its position gets reset to its initial value and simultaneously its velocity gets randomized. We study the effects of resetting on the distribution P(Q, t) of the integrated particle current Q up to time t through the origin (from left to right). We study both the annealed and the quenched current distributions and in both cases, we find that resetting induces a stationary limiting distribution of the current at long times. However, we show that the approach to the stationary state of the current distribution in the annealed and the quenched cases are drastically different for both models. In the annealed case, the whole distribution P-an(Q, t) approaches its stationary limit uniformly for all Q. In contrast, the quenched distribution P-qu(Q, t) attains its stationary form for Q < Q(crit)(t), while it remains time dependent for Q > Q(crit)(t). We show that Q(crit)(t) increases linearly with t for large t. On the scale where Q <; Q(crit)(t), we show that P-qu(Q, t) has an unusual large deviation form with a rate function that has a third-order phase transition at the critical point. We have computed the associated rate functions analytically for both models. Using an importance sampling method that allows to probe probabilities as tiny as 10-14000, we were able to compute numerically this nonanalytic rate function for the resetting Brownian dynamics and found excellent agreement with our analytical prediction.}, language = {en} } @article{SchwopePiresKurpasetal.2022, author = {Schwope, Axel and Pires, Adriana M. and Kurpas, Jan and Doroshenko, Victor and Suleimanov, Valery F. and Freyberg, Michael and Becker, Werner and Dennerl, Konrad and Haberl, Frank and Lamer, Georg and Maitra, Chandreyee and Potekhin, Alexander Y. and Ramos-Ceja, Miriam E. and Santangelo, Andrea and Traulsen, Iris and Werner, Klaus}, title = {Phase-resolved X-ray spectroscopy of PSR B0656+14 with SRG/eROSITA and XMM-Newton}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {661}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202141105}, pages = {21}, year = {2022}, abstract = {We present a detailed spectroscopic and timing analysis of X-ray observations of the bright pulsar PSR B0656+14. The observations were obtained simultaneously with eROSITA and XMM-Newton during the calibration and performance verification phase of the Spektrum-Roentgen-Gamma mission (SRG). The analysis of the 100 ks deep observation of eROSITA is supported by archival observations of the source, including XMM-Newton, NuSTAR, and NICER. Using XMM-Newton and NICER, we first established an X-ray ephemeris for the time interval 2015 to 2020, which connects all X-ray observations in this period without cycle count alias and phase shifts. The mean eROSITA spectrum clearly reveals an absorption feature originating from the star at 570 eV with a Gaussian sigma of about 70 eV that was tentatively identified in a previous long XMM-Newton observation. A second previously discussed absorption feature occurs at 260-265 eV and is described here as an absorption edge. It could be of atmospheric or of instrumental origin. These absorption features are superposed on various emission components that are phenomenologically described here as the sum of hot (120 eV) and cold (65 eV) blackbody components, both of photospheric origin, and a power law with photon index Gamma = 2 from the magnetosphere. We created energy-dependent light curves and phase-resolved spectra with a high signal-to-noise ratio. The phase-resolved spectroscopy reveals that the Gaussian absorption line at 570 eV is clearly present throughout similar to 60\% of the spin cycle, but it is otherwise undetected. Likewise, its parameters were found to be dependent on phase. The visibility of the line strength coincides in phase with the maximum flux of the hot blackbody. If the line originates from the stellar surface, it nevertheless likely originates from a different location than the hot polar cap. We also present three families of model atmospheres: a magnetized atmosphere, a condensed surface, and a mixed model. They were applied to the mean observed spectrum, whose continuum fit the observed data well. The atmosphere model, however, predicts distances that are too short. For the mixed model, the Gaussian absorption may be interpreted as proton cyclotron absorption in a field as high as 10(14) G, which is significantly higher than the field derived from the moderate observed spin-down.}, language = {en} } @article{WarbyZuZeiskeetal.2022, author = {Warby, Jonathan and Zu, Fengshuo and Zeiske, Stefan and Gutierrez-Partida, Emilio and Frohloff, Lennart and Kahmann, Simon and Frohna, Kyle and Mosconi, Edoardo and Radicchi, Eros and Lang, Felix and Shah, Sahil and Pena-Camargo, Francisco and Hempel, Hannes and Unold, Thomas and Koch, Norbert and Armin, Ardalan and De Angelis, Filippo and Stranks, Samuel D. and Neher, Dieter and Stolterfoht, Martin}, title = {Understanding performance limiting interfacial recombination in pin Perovskite solar cells}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {12}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202103567}, pages = {10}, year = {2022}, abstract = {Perovskite semiconductors are an attractive option to overcome the limitations of established silicon based photovoltaic (PV) technologies due to their exceptional opto-electronic properties and their successful integration into multijunction cells. However, the performance of single- and multijunction cells is largely limited by significant nonradiative recombination at the perovskite/organic electron transport layer junctions. In this work, the cause of interfacial recombination at the perovskite/C-60 interface is revealed via a combination of photoluminescence, photoelectron spectroscopy, and first-principle numerical simulations. It is found that the most significant contribution to the total C-60-induced recombination loss occurs within the first monolayer of C-60, rather than in the bulk of C-60 or at the perovskite surface. The experiments show that the C-60 molecules act as deep trap states when in direct contact with the perovskite. It is further demonstrated that by reducing the surface coverage of C-60, the radiative efficiency of the bare perovskite layer can be retained. The findings of this work pave the way toward overcoming one of the most critical remaining performance losses in perovskite solar cells.}, language = {en} } @article{HerbstBaalmannBykovetal.2022, author = {Herbst, Konstantin and Baalmann, Lennart R. and Bykov, Andrei and Engelbrecht, N. Eugene and Ferreira, Stefan E. S. and Izmodenov, Vladislav V. and Korolkov, Sergey D. and Levenfish, Ksenia P. and Linsky, Jeffrey L. and Meyer, Dominique M. -A. and Scherer, Klaus and Strauss, R. Du Toit}, title = {Astrospheres of planet-hosting cool stars and beyond when modeling meets observations}, series = {Space science reviews}, volume = {218}, journal = {Space science reviews}, number = {4}, publisher = {Springer Nature}, address = {Dordrecht}, issn = {0038-6308}, doi = {10.1007/s11214-022-00894-3}, pages = {46}, year = {2022}, abstract = {Thanks to dedicated long-term missions like Voyager and GOES over the past 50 years, much insight has been gained on the activity of our Sun, the solar wind, its interaction with the interstellar medium, and, thus, about the formation, the evolution, and the structure of the heliosphere. Additionally, with the help of multi-wavelength observations by the Hubble Space Telescope, Kepler, and TESS, we not only were able to detect a variety of extrasolar planets and exomoons but also to study the characteristics of their host stars, and thus became aware that other stars drive bow shocks and astrospheres. Although features like, e.g., stellar winds, could not be measured directly, over the past years several techniques have been developed allowing us to indirectly derive properties like stellar mass-loss rates and stellar wind speeds, information that can be used as direct input to existing astrospheric modeling codes. In this review, the astrospheric modeling efforts of various stars will be presented. Starting with the heliosphere as a benchmark of astrospheric studies, investigating the paleo-heliospheric changes and the Balmer H alpha projections to 1 pc, we investigate the surroundings of cool and hot stars, but also of more exotic objects like neutron stars. While pulsar wind nebulae (PWNs) might be a source of high-energy galactic cosmic rays (GCRs), the astrospheric environments of cool and hot stars form a natural shield against GCRs. Their modulation within these astrospheres, and the possible impact of turbulence, are also addressed. This review shows that all of the presented modeling efforts are in excellent agreement with currently available observations.}, language = {en} } @article{OranWeissSantacruzPichetal.2022, author = {Oran, Rona and Weiss, Benjamin P. and Santacruz-Pich, Maria De Soria and Jun, Insoo and Lawrence, David J. and Polanskey, Carol A. and Ratliff, J. Martin and Raymond, Carol A. and Ream, Jodie B. and Russell, Christopher T. and Shprits, Yuri Y. and Zuber, Maria T. and Elkins-Tanton, Linda T.}, title = {Maximum energies of trapped particles around magnetized planets and small bodies}, series = {Geophysical research letters}, volume = {49}, journal = {Geophysical research letters}, number = {13}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0094-8276}, doi = {10.1029/2021GL097014}, pages = {11}, year = {2022}, abstract = {Energetic charged particles trapped in planetary radiation belts are hazardous to spacecraft. Planned missions to iron-rich asteroids with possible strong remanent magnetic fields require an assessment of trapped particles energies. Using laboratory measurements of iron meteorites, we estimate the largest possible asteroid magnetic moment. Although weak compared to moments of planetary dynamos, the small body size may yield strong surface fields. We use hybrid simulations to confirm the formation of a magnetosphere with an extended quasi-dipolar region. However, the short length scale of the field implies that energetic particle motion would be nonadiabatic, making existing radiation belt theories not applicable. Our idealized particle simulations demonstrate that chaotic motions lead to particle loss at lower energies than those predicted by adiabatic theory, which may explain the energies of transiently trapped particles observed at Mercury, Ganymede, and Earth. However, even the most magnetized asteroids are unlikely to stably trap hazardous particles.}, language = {en} } @article{AguileraDenaLangerAntoniadisetal.2022, author = {Aguilera-Dena, David R. and Langer, Norbert and Antoniadis, John and Pauli, Daniel and Dessart, Luc and Vigna-G{\´o}mez, Alejandro and Gr{\"a}fener, G{\"o}tz and Yoon, Sung-Chul}, title = {Stripped-envelope stars in different metallicity environments: I. Evolutionary phases, classification, and populations}, series = {Astronomy and astrophysics}, volume = {661}, journal = {Astronomy and astrophysics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142895}, pages = {20}, year = {2022}, abstract = {Massive stars that become stripped of their hydrogen envelope through binary interaction or winds can be observed either as Wolf-Rayet stars, if they have optically thick winds, or as transparent-wind stripped-envelope stars. We approximate their evolution through evolutionary models of single helium stars, and compute detailed model grids in the initial mass range 1.5-70 M. for metallicities between 0.01 and 0.04, from core helium ignition until core collapse. Throughout their lifetimes some stellar models expose the ash of helium burning. We propose that models that have nitrogen-rich envelopes are candidate WN stars, while models with a carbon-rich surface are candidate WC stars during core helium burning, and WO stars afterwards. We measure the metallicity dependence of the total lifetimes of our models and the duration of their evolutionary phases. We propose an analytic estimate of the wind's optical depth to distinguish models of Wolf-Rayet stars from transparent-wind stripped-envelope stars, and find that the luminosity ranges at which WN-, WC-, and WO-type stars can exist is a strong function of metallicity. We find that all carbon-rich models produced in our grids have optically thick winds and match the luminosity distribution of observed populations. We construct population models and predict the numbers of transparent-wind stripped-envelope stars and Wolf-Rayet stars, and derive their number ratios at different metallicities. We find that as metallicity increases, the number of transparent-wind stripped-envelope stars decreases and the number of Wolf-Rayet stars increases. At high metallicities WC- and WO-type stars become more common. We apply our population models to nearby galaxies, and find that populations are more sensitive to the transition luminosity between Wolf-Rayet stars and transparent-wind helium stars than to the metallicity-dependent mass loss rates.}, language = {en} } @article{MarinBeloquiZhangGuoetal.2022, author = {Marin-Beloqui, Jose and Zhang, Guanran and Guo, Junjun and Shaikh, Jordan and Wohrer, Thibaut and Hosseini, Seyed Mehrdad and Sun, Bowen and Shipp, James and Auty, Alexander J. and Chekulaev, Dimitri and Ye, Jun and Chin, Yi-Chun and Sullivan, Michael B. and Mozer, Attila J. and Kim, Ji-Seon and Shoaee, Safa and Clarke, Tracey M.}, title = {Insight into the origin of trapping in polymer/fullerene blends with a systematic alteration of the fullerene to higher adducts}, series = {Journal of physical chemistry C}, volume = {126}, journal = {Journal of physical chemistry C}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/acs.jpcc.1c10378}, pages = {2708 -- 2719}, year = {2022}, abstract = {The bimolecular recombination characteristics of conjugated polymer poly[(4,4'-bis(2-ethylhexyl)dithieno[3,2-b:2',3'-d]silole)-2,6-diyl-alt-(2,5-bis 3-tetradecylthiophen-2-y1 thiazolo 5,4-d thiazole)-2,5diy1] (PDTSiTTz) blended with the fullerene series PC60BM, ICMA, ICBA, and ICTA have been investigated using microsecond and femtosecond transient absorption spectroscopy, in conjunction with electroluminescence measurements and ambient photoemission spectroscopy. The non-Langevin polymer PDTSiTTz allows an inspection of intrinsic bimolecular recombination rates uninhibited by diffusion, while the low oscillator strengths of fullerenes allow polymer features to dominate, and we compare our results to those of the well-known polymer Si-PCPDTBT. Using mu s-TAS, we have shown that the trap -limited decay dynamics of the PDTSiTTz polaron becomes progressively slower across the fullerene series, while those of Si-PCPDTBT are invariant. Electroluminescence measurements showed an unusual double peak in pristine PDTSiTTz, attributed to a low energy intragap charge transfer state, likely interchain in nature. Furthermore, while the pristine PDTSiTTz showed a broad, low-intensity density of states, the ICBA and ICTA blends presented a virtually identical DOS to Si-PCPDTBT and its blends. This has been attributed to a shift from a delocalized, interchain highest occupied molecular orbital (HOMO) in the pristine material to a dithienosilole-centered HOMO in the blends, likely a result of the bulky fullerenes increasing interchain separation. This HOMO localization had a side effect of progressively shifting the polymer HOMO to shallower energies, which was correlated with the observed decrease in bimolecular recombination rate and increased "trap" depth. However, since the density of tail states remained the same, this suggests that the traditional viewpoint of "trapping" being dominated by tail states may not encompass the full picture and that the breadth of the DOS may also have a strong influence on bimolecular recombination.}, language = {en} } @article{IzotovChisholmWorsecketal.2022, author = {Izotov, Yuri I. and Chisholm, John and Worseck, G{\´a}bor and Guseva, Natalia G. and Schaerer, Daniel and Prochaska, Jason Xavier}, title = {Lyman alpha and Lyman continuum emission of Mg II-selected star-forming galaxies}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1899}, pages = {2864 -- 2881}, year = {2022}, abstract = {We present observations with the Cosmic Origins Spectrograph onboard the Hubble Space Telescope of seven compact low-mass star-forming galaxies at redshifts, z, in the range 0.3161-0.4276, with various O3Mg2 = [O III] lambda 5007/Mg II lambda 2796+2803 and Mg-2 = Mg II lambda 2796/Mg II lambda 2803 emission-line ratios. We aim to study the dependence of leaking Lyman continuum (LyC) emission on the characteristics of Mg ii emission together with the dependencies on other indirect indicators of escaping ionizing radiation. LyC emission with escape fractions f(esc)(LyC) = 3.1-4.6 per cent is detected in four galaxies, whereas only 1 sigma upper limits of f(esc)(LyC) in the remaining three galaxies were derived. A strong narrow Ly alpha emission line with two peaks separated by V-sep similar to 298-592 km s(-1) was observed in four galaxies with detected LyC emission and very weak Ly alpha emission is observed in galaxies with LyC non-detections. Our new data confirm the tight anticorrelation between f(esc)(LyC) and V-sep found for previous low-redshift galaxy samples. V-sep remains the best indirect indicator of LyC leakage among all considered indicators. It is found that escaping LyC emission is detected predominantly in galaxies with Mg-2 greater than or similar to 1.3. A tendency of an increase of f(esc)(LyC) with increasing of both the O3Mg2 and Mg-2 is possibly present. However, there is substantial scatter in these relations not allowing their use for reliable prediction of f(esc)(LyC).}, language = {en} } @article{BrinkmannBeckerZimmermannetal.2022, author = {Brinkmann, Kai Oliver and Becker, Tim and Zimmermann, Florian and Kreusel, Cedric and Gahlmann, Tobias and Theisen, Manuel and Haeger, Tobias and Olthof, Selina and T{\"u}ckmantel, Christian and G{\"u}nster, M. and Maschwitz, Timo and G{\"o}belsmann, Fabian and Koch, Christine and Hertel, Dirk and Caprioglio, Pietro and Pe{\~n}a-Camargo, Francisco and Perdig{\´o}n-Toro, Lorena and Al-Ashouri, Amran and Merten, Lena and Hinderhofer, Alexander and Gomell, Leonie and Zhang, Siyuan and Schreiber, Frank and Albrecht, Steve and Meerholz, Klaus and Neher, Dieter and Stolterfoht, Martin and Riedl, Thomas}, title = {Perovskite-organic tandem solar cells with indium oxide interconnect}, series = {Nature}, volume = {604}, journal = {Nature}, number = {7905}, publisher = {Nature Research}, address = {Berlin}, issn = {0028-0836}, doi = {10.1038/s41586-022-04455-0}, pages = {280 -- 286}, year = {2022}, abstract = {Multijunction solar cells can overcome the fundamental efficiency limits of single-junction devices. The bandgap tunability of metal halide perovskite solar cells renders them attractive for multijunction architectures(1). Combinations with silicon and copper indium gallium selenide (CIGS), as well as all-perovskite tandem cells, have been reported(2-5). Meanwhile, narrow-gap non-fullerene acceptors have unlocked skyrocketing efficiencies for organic solar cells(6,7). Organic and perovskite semiconductors are an attractive combination, sharing similar processing technologies. Currently, perovskite-organic tandems show subpar efficiencies and are limited by the low open-circuit voltage (V-oc) of wide-gap perovskite cells(8) and losses introduced by the interconnect between the subcells(9,10). Here we demonstrate perovskite-organic tandem cells with an efficiency of 24.0 per cent (certified 23.1 per cent) and a high V-oc of 2.15 volts. Optimized charge extraction layers afford perovskite subcells with an outstanding combination of high V-oc and fill factor. The organic subcells provide a high external quantum efficiency in the near-infrared and, in contrast to paradigmatic concerns about limited photostability of non-fullerene cells(11), show an outstanding operational stability if excitons are predominantly generated on the non-fullerene acceptor, which is the case in our tandems. The subcells are connected by an ultrathin (approximately 1.5 nanometres) metal-like indium oxide layer with unprecedented low optical/electrical losses. This work sets a milestone for perovskite-organic tandems, which outperform the best p-i-n perovskite single junctions(12) and are on a par with perovskite-CIGS and all-perovskite multijunctions(13).}, language = {en} } @article{ZapataArteagaMarinaZuoetal.2022, author = {Zapata-Arteaga, Osnat and Marina, Sara and Zuo, Guangzheng and Xu, Kai and D{\"o}rling, Bernhard and Alberto P{\´e}rez, Luis and Sebasti{\´a}n Reparaz, Juan and Mart{\´i}n, Jaime and Kemerink, Martijn and Campoy-Quiles, Mariano}, title = {Design rules for polymer blends with high thermoelectric performance}, series = {Advanced energy materials}, volume = {12}, journal = {Advanced energy materials}, number = {19}, publisher = {Wiley}, address = {Weinheim}, issn = {1614-6832}, doi = {10.1002/aenm.202104076}, pages = {11}, year = {2022}, abstract = {A combinatorial study of the effect of in-mixing of various guests on the thermoelectric properties of the host workhorse polymer poly[2,5-bis(3-tetradecylthiophen-2-yl)thieno[3,2-b]thiophene] (PBTTT) is presented. Specifically, the composition and thickness for doped films of PBTTT blended with different polymers are varied. Some blends at guest weight fractions around 10-15\% exhibit up to a fivefold increase in power factor compared to the reference material, leading to zT values around 0.1. Spectroscopic analysis of the charge-transfer species, structural characterization using grazing-incidence wide-angle X-ray scattering, differential scanning calorimetry, Raman, and atomic force microscopy, and Monte Carlo simulations are employed to determine that the key to improved performance is for the guest to promote long-range electrical connectivity and low disorder, together with similar highest occupied molecular orbital levels for both materials in order to ensure electronic connectivity are combined.}, language = {en} } @article{NiederhoferCioniSchmidtetal.2022, author = {Niederhofer, Florian and Cioni, Maria-Rosa L. and Schmidt, Thomas and Bekki, Kenji and de Grijs, Richard and Ivanov, Valentin D. and Oliveira, Joana M. and Ripepi, Vincenzo and Subramanian, Smitha and van Loon, Jacco Th}, title = {The VMC survey - XLVI. Stellar proper motions in the centre of the Large Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac712}, pages = {5423 -- 5439}, year = {2022}, abstract = {We present proper motion (PM) measurements within the central region of the Large Magellanic Cloud (LMC), using near-infrared data from the VISTA survey of the Magellanic Cloud system (VMC). This work encompasses 18 VMC tiles covering a total sky area of similar to 28 deg(2). We computed absolute stellar PMs from multiepoch observations in the K-s filter over time baselines between similar to 12 and 47 months. Our final catalogue contains similar to 6322 000 likely LMC member stars with derived PMs. We employed a simple flat-rotating disc model to analyse and interpret the PM data. We found a stellar centre of rotation (alpha(0) = 79.95 degrees(+0.22)(-0.23), delta(0) = -69.31 degrees(+0.12)(-0.11)) that is in agreement with that resulting from Hubble Space Telescope data. The inferred viewing angles of the LMC disc (i = 33.5 degrees(+1.2)(-1.3), Theta = 129.8 degrees(+1.9)(-1.9)) are in good agreement with values from the literature but suggest a higher inclination of the central parts of the LMC. Our data confirm a higher rotation amplitude for the young (less than or similar to 0.5 Gyr) stars compared to the intermediate-age/old (greater than or similar to 1 Gyr) population, which can be explained by asymmetric drift. We constructed spatially resolved velocity maps of the intermediate-age/old and young populations. Intermediate-age/old stars follow elongated orbits parallel to the bar's major axis, providing first observational evidence for x(1) orbits within the LMC bar. In the innermost regions, the motions show more chaotic structures. Young stars show motions along a central filamentary bar structure.}, language = {en} } @article{AlvaradoGomezCohenDrakeetal.2022, author = {Alvarado-G{\´o}mez, Juli{\´a}n D. and Cohen, Ofer and Drake, Jeremy J. and Fraschetti, Federico and Poppenh{\"a}ger, Katja and Garraffo, Cecilia and Chebly, Judy and Ilin, Ekaterina and Harbach, Laura and Kochukhov, Oleg}, title = {Simulating the space weather in the AU Mic system: stellar winds and extreme coronal mass ejections}, series = {Astrophysical journal}, volume = {928}, journal = {Astrophysical journal}, number = {2}, publisher = {IOP Publishing}, address = {Bristol}, issn = {1538-4357}, doi = {10.3847/1538-4357/ac54b8}, pages = {12}, year = {2022}, abstract = {Two close-in planets have been recently found around the M-dwarf flare star AU Microscopii (AU Mic). These Neptune-sized planets (AU Mic b and c) seem to be located very close to the so-called "evaporation valley" in the exoplanet population, making this system an important target for studying atmospheric loss on exoplanets. This process, while mainly driven by high-energy stellar radiation, will be strongly mediated by the space environment surrounding the planets. Here we present an investigation of this last area, performing 3D numerical modeling of the quiescent stellar wind from AU Mic, as well as time-dependent simulations describing the evolution of a highly energetic coronal mass ejection (CME) event in this system. Observational constraints on the stellar magnetic field and properties of the eruption are incorporated in our models. We carry out qualitative and quantitative characterizations of the stellar wind, the emerging CMEs, as well as the expected steady and transient conditions along the orbit of both exoplanets. Our results predict extreme space weather for AU Mic and its planets. This includes sub-Alfvenic regions for the large majority of the exoplanet orbits, very high dynamic and magnetic pressure values in quiescence (varying within 10(2)-10(5) times the dynamic pressure experienced by Earth), and an even harsher environment during the passage of any escaping CME associated with the frequent flaring observed in AU Mic. These space weather conditions alone pose an immense challenge for the survival of exoplanetary atmospheres (if any) in this system.}, language = {en} } @article{HovhannisyanNematiHenkeletal.2023, author = {Hovhannisyan, Karen V. and Nemati, Somayyeh and Henkel, Carsten and Anders, Janet}, title = {Long-time equilibration can determine transient thermality}, series = {PRX Quantum}, volume = {4}, journal = {PRX Quantum}, number = {3}, publisher = {American Physical Society}, address = {College Park}, issn = {2691-3399}, doi = {10.1103/PRXQuantum.4.030321}, pages = {23}, year = {2023}, abstract = {When two initially thermal many-body systems start to interact strongly, their transient states quickly become non-Gibbsian, even if the systems eventually equilibrate. To see beyond this apparent lack of structure during the transient regime, we use a refined notion of thermality, which we call g-local. A system is g-locally thermal if the states of all its small subsystems are marginals of global thermal states. We numerically demonstrate for two harmonic lattices that whenever the total system equilibrates in the long run, each lattice remains g-locally thermal at all times, including the transient regime. This is true even when the lattices have long-range interactions within them. In all cases, we find that the equilibrium is described by the generalized Gibbs ensemble, with three-dimensional lattices requiring special treatment due to their extended set of conserved charges. We compare our findings with the well-known two-temperature model. While its standard form is not valid beyond weak coupling, we show that at strong coupling it can be partially salvaged by adopting the concept of a g-local temperature.}, language = {en} } @article{MeyerPohlPetrovetal.2023, author = {Meyer, Dominique M.-A. and Pohl, Martin and Petrov, M. and Egberts, Kathrin}, title = {Mixing of materials in magnetized core-collapse supernova remnants}, series = {Monthly notices of the Royal Astronomical Society}, volume = {521}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stad906}, pages = {5354 -- 5371}, year = {2023}, abstract = {Core-collapse supernova remnants are structures of the interstellar medium (ISM) left behind the explosive death of most massive stars ( ?40 M-?). Since they result in the expansion of the supernova shock wave into the gaseous environment shaped by the star's wind history, their morphology constitutes an insight into the past evolution of their progenitor star. Particularly, fast-mo ving massiv e stars can produce asymmetric core-collapse superno va remnants. We inv estigate the mixing of materials in core-collapse supernova remnants generated by a moving massive 35 M-? star, in a magnetized ISM. Stellar rotation and the wind magnetic field are time-dependently included into the models which follow the entire evolution of the stellar surroundings from the zero-age main-sequence to 80 kyr after the supernova explosion. It is found that very little main-sequence material is present in remnants from moving stars, that the Wolf-Rayet wind mixes very efficiently within the 10 kyr after the explosion, while the red supergiant material is still unmixed by 30 per cent within 50 kyr after the supernova. Our results indicate that the faster the stellar motion, the more complex the internal organization of the supernova remnant and the more ef fecti ve the mixing of ejecta therein. In contrast, the mixing of stellar wind material is only weakly affected by progenitor motion, if at all.}, language = {en} } @article{MatternReppertZeuschneretal.2023, author = {Mattern, Maximilian and Reppert, Alexander von and Zeuschner, Steffen Peer and Herzog, Marc and Pudell, Jan-Etienne and Bargheer, Matias}, title = {Concepts and use cases for picosecond ultrasonics with x-rays}, series = {Photoacoustics}, volume = {31}, journal = {Photoacoustics}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2213-5979}, doi = {10.1016/j.pacs.2023.100503}, pages = {22}, year = {2023}, abstract = {This review discusses picosecond ultrasonics experiments using ultrashort hard x-ray probe pulses to extract the transient strain response of laser-excited nanoscopic structures from Bragg-peak shifts. This method provides direct, layer-specific, and quantitative information on the picosecond strain response for structures down to few-nm thickness. We model the transient strain using the elastic wave equation and express the driving stress using Gruneisen parameters stating that the laser-induced stress is proportional to energy density changes in the microscopic subsystems of the solid, i.e., electrons, phonons and spins. The laser-driven strain response can thus serve as an ultrafast proxy for local energy-density and temperature changes, but we emphasize the importance of the nanoscale morphology for an accurate interpretation due to the Poisson effect. The presented experimental use cases encompass ultrathin and opaque metal-heterostructures, continuous and granular nanolayers as well as negative thermal expansion materials, that each pose a challenge to established all-optical techniques.}, language = {en} } @article{GeistGallagherKotullaetal.2022, author = {Geist, Emily and Gallagher, John S. and Kotulla, Ralf and Oskinova, Lida and Hamann, Wolf-Rainer and Ramachandran, Varsha and Sabbi, Elena and Smith, Linda J. and Kniazev, Alexey and Nota, Antonella and Rickard, Matthew J.}, title = {Ionization and star formation in the giant H ii region SMC-N66}, series = {Publications of the Astronomical Society of the Pacific}, volume = {134}, journal = {Publications of the Astronomical Society of the Pacific}, number = {1036}, publisher = {IOP Publishing}, address = {Bristol}, issn = {0004-6280}, doi = {10.1088/1538-3873/ac697b}, pages = {11}, year = {2022}, abstract = {The NGC 346 young stellar system and associated N66 giant H ii region in the Small Magellanic Cloud are the nearest example of a massive star-forming event in a low metallicity (Z approximate to 0.2Z (circle dot)) galaxy. With an age of less than or similar to 3 Myr this system provides a unique opportunity to study relationships between massive stars and their associated H ii region. Using archival data, we derive a total H alpha luminosity of L(H alpha) = 4.1 x 10(38) erg s(-1) corresponding to an H-photoionization rate of 3 x 10(50) s(-1). A comparison with a predicted stellar ionization rate derived from the more than 50 known O-stars in NGC 346, including massive stars recently classified from Hubble Space Telescope far-ultraviolet (FUV) spectra, indicates an approximate ionization balance. Spectra obtained with SALT suggest the ionization structure of N66 could be consistent with some leakage of ionizing photons. Due to the low metallicity, the FUV luminosity from NGC 346 is not confined to the interstellar cloud associated with N66. Ionization extends through much of the spatial extent of the N66 cloud complex, and most of the cloud mass is not ionized. The stellar mass estimated from nebular L(H alpha) appears to be lower than masses derived from the census of resolved stars which may indicate a disconnect between the formation of high and low mass stars in this region. We briefly discuss implications of the properties of N66 for studies of star formation and stellar feedback in low metallicity environments.}, language = {en} } @article{PerottoniLimbergAmaranteetal.2022, author = {Perottoni, H{\´e}lio D. and Limberg, Guilherme and Amarante, Jo{\~a}o A. S. and Rossi, Silvia and Queiroz, Anna B. A. and Santucci, Rafael M. and P{\´e}rez-Villegas, Angeles and Chiappini, Cristina}, title = {The unmixed debris of Gaia-Sausage/Enceladus in the form of a pair of halo stellar overdensities}, series = {Astrophysical journal letters}, volume = {936}, journal = {Astrophysical journal letters}, number = {1}, publisher = {IOP Publishing}, address = {Bristol}, issn = {2041-8213}, doi = {10.3847/2041-8213/ac88d6}, pages = {7}, year = {2022}, abstract = {In the first billion years after its formation, the galaxy underwent several mergers with dwarf satellites of various masses. The debris of Gaia-Sausage/Enceladus (GSE), the galaxy responsible for the last significant merger of the Milky Way, dominates the inner halo and has been suggested to be the progenitor of both the Hercules-Aquila Cloud (HAC) and Virgo Overdensity (VOD). We combine SEGUE, APOGEE, Gaia, and StarHorse distances to characterize the chemodynamical properties and verify the link between HAC, VOD, and GSE. We find that the orbital eccentricity distributions of the stellar overdensities and GSE are comparable. We also find that they have similar, strongly peaked, metallicity distribution functions, reinforcing the hypothesis of common origin. Furthermore, we show that HAC and VOD are indistinguishable from the prototypical GSE population within all chemical-abundance spaces analyzed. All these evidences combined provide a clear demonstration that the GSE merger is the main progenitor of the stellar populations found within these halo overdensities.}, language = {en} } @article{PranavHultzschMusiienkoetal.2023, author = {Pranav, Manasi and Hultzsch, Thomas and Musiienko, Artem and Sun, Bowen and Shukla, Atul and Jaiser, Frank and Shoaee, Safa and Neher, Dieter}, title = {Anticorrelated photoluminescence and free charge generation proves field-assisted exciton dissociation in low-offset PM6:Y5 organic solar cells}, series = {APL materials : high impact open access journal in functional materials science}, volume = {11}, journal = {APL materials : high impact open access journal in functional materials science}, number = {6}, publisher = {AIP Publishing}, address = {Melville}, issn = {2166-532X}, doi = {10.1063/5.0151580}, pages = {8}, year = {2023}, abstract = {Understanding the origin of inefficient photocurrent generation in organic solar cells with low energy offset remains key to realizing high-performance donor-acceptor systems. Here, we probe the origin of field-dependent free-charge generation and photoluminescence in wnon-fullereneacceptor (NFA)-based organic solar cells using the polymer PM6 and the NFA Y5-a non-halogenated sibling to Y6, with a smaller energetic offset to PM6. By performing time-delayed collection field (TDCF) measurements on a variety of samples with different electron transport layers and active layer thickness, we show that the fill factor and photocurrent are limited by field-dependent free charge generation in the bulk of the blend. We also introduce a new method of TDCF called m-TDCF to prove the absence of artifacts from non-geminate recombination of photogenerated and dark charge carriers near the electrodes. We then correlate free charge generation with steady-state photoluminescence intensity and find perfect anticorrelation between these two properties. Through this, we conclude that photocurrent generation in this low-offset system is entirely controlled by the field-dependent dissociation of local excitons into charge-transfer states. (c) 2023 Author(s).}, language = {en} } @article{StojkoskiJolakoskiPaletal.2022, author = {Stojkoski, Viktor and Jolakoski, Petar and Pal, Arnab and Sandev, Trifce and Kocarev, Ljupco and Metzler, Ralf}, title = {Income inequality and mobility in geometric Brownian motion with stochastic resetting: theoretical results and empirical evidence of non-ergodicity}, series = {Philosophical transactions of the Royal Society A: Mathematical, physical and engineering sciences}, volume = {380}, journal = {Philosophical transactions of the Royal Society A: Mathematical, physical and engineering sciences}, number = {2224}, publisher = {Royal Society}, address = {London}, issn = {1364-503X}, doi = {10.1098/rsta.2021.0157}, pages = {17}, year = {2022}, abstract = {We explore the role of non-ergodicity in the relationship between income inequality, the extent of concentration in the income distribution, and income mobility, the feasibility of an individual to change their position in the income rankings. For this purpose, we use the properties of an established model for income growth that includes 'resetting' as a stabilizing force to ensure stationary dynamics. We find that the dynamics of inequality is regime-dependent: it may range from a strictly non-ergodic state where this phenomenon has an increasing trend, up to a stable regime where inequality is steady and the system efficiently mimics ergodicity. Mobility measures, conversely, are always stable over time, but suggest that economies become less mobile in non-ergodic regimes. By fitting the model to empirical data for the income share of the top earners in the USA, we provide evidence that the income dynamics in this country is consistently in a regime in which non-ergodicity characterizes inequality and immobility. Our results can serve as a simple rationale for the observed real-world income dynamics and as such aid in addressing non-ergodicity in various empirical settings across the globe.This article is part of the theme issue 'Kinetic exchange models of societies and economies'.}, language = {en} } @article{MayerLeverPicconietal.2022, author = {Mayer, Dennis and Lever, Fabiano and Picconi, David and Metje, Jan and Ališauskas, Skirmantas and Calegari, Francesca and D{\"u}sterer, Stefan and Ehlert, Christopher and Feifel, Raimund and Niebuhr, Mario and Manschwetus, Bastian and Kuhlmann, Marion and Mazza, Tommaso and Robinson, Matthew Scott and Squibb, Richard J. and Trabattoni, Andrea and Wallner, M{\aa}ns and Saalfrank, Peter and Wolf, Thomas J. A. and G{\"u}hr, Markus}, title = {Following excited-state chemical shifts in molecular ultrafast x-ray photoelectron spectroscopy}, series = {Nature communications}, volume = {13}, journal = {Nature communications}, number = {1}, publisher = {Nature Research}, address = {Berlin}, issn = {2041-1723}, doi = {10.1038/s41467-021-27908-y}, pages = {9}, year = {2022}, abstract = {Imaging the charge flow in photoexcited molecules would provide key information on photophysical and photochemical processes. Here the authors demonstrate tracking in real time after photoexcitation the change in charge density at a specific site of 2-thiouracil using time-resolved X-ray photoelectron spectroscopy. The conversion of photon energy into other energetic forms in molecules is accompanied by charge moving on ultrafast timescales. We directly observe the charge motion at a specific site in an electronically excited molecule using time-resolved x-ray photoelectron spectroscopy (TR-XPS). We extend the concept of static chemical shift from conventional XPS by the excited-state chemical shift (ESCS), which is connected to the charge in the framework of a potential model. This allows us to invert TR-XPS spectra to the dynamic charge at a specific atom. We demonstrate the power of TR-XPS by using sulphur 2p-core-electron-emission probing to study the UV-excited dynamics of 2-thiouracil. The method allows us to discover that a major part of the population relaxes to the molecular ground state within 220-250 fs. In addition, a 250-fs oscillation, visible in the kinetic energy of the TR-XPS, reveals a coherent exchange of population among electronic states.}, language = {en} } @article{LiuIgnatovaKimbergetal.2022, author = {Liu, Ji-Cai and Ignatova, Nina and Kimberg, Victor and Krasnov, Pavel and F{\"o}hlisch, Alexander and Simon, Marc and Gel'mukhanov, Faris}, title = {Time-resolved study of recoil-induced rotation by X-ray pump - X-ray probe spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {11}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d1cp05000a}, pages = {6627 -- 6638}, year = {2022}, abstract = {Modern stationary X-ray spectroscopy is unable to resolve rotational structure. In the present paper, we propose to use time-resolved two color X-ray pump-probe spectroscopy with picosecond resolution for real-time monitoring of the rotational dynamics induced by the recoil effect. The proposed technique consists of two steps. The first short pump X-ray pulse ionizes the valence electron, which transfers angular momentum to the molecule. The second time-delayed short probe X-ray pulse resonantly excites a 1s electron to the created valence hole. Due to the recoil-induced angular momentum the molecule rotates and changes the orientation of transition dipole moment of core-excitation with respect to the transition dipole moment of the valence ionization, which results in a temporal modulation of the probe X-ray absorption as a function of the delay time between the pulses. We developed an accurate theory of the X-ray pump-probe spectroscopy of the recoil-induced rotation and study how the energy of the photoelectron and thermal dephasing affect the structure of the time-dependent X-ray absorption using the CO molecule as a case-study. We also discuss the feasibility of experimental observation of our theoretical findings, opening new perspectives in studies of molecular rotational dynamics.}, language = {en} } @article{AbiusoHolubecAndersetal.2022, author = {Abiuso, Paolo and Holubec, Viktor and Anders, Janet and Ye, Zhuolin and Cerisola, Federico and Perarnau-Llobet, Marti}, title = {Thermodynamics and optimal protocols of multidimensional quadratic Brownian systems}, series = {Journal of physics communications}, volume = {6}, journal = {Journal of physics communications}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {2399-6528}, doi = {10.1088/2399-6528/ac72f8}, pages = {15}, year = {2022}, abstract = {We characterize finite-time thermodynamic processes of multidimensional quadratic overdamped systems. Analytic expressions are provided for heat, work, and dissipation for any evolution of the system covariance matrix. The Bures-Wasserstein metric between covariance matrices naturally emerges as the local quantifier of dissipation. General principles of how to apply these geometric tools to identify optimal protocols are discussed. Focusing on the relevant slow-driving limit, we show how these results can be used to analyze cases in which the experimental control over the system is partial.}, language = {en} } @article{VoroshninTarasovBokaietal.2022, author = {Voroshnin, Vladimir and Tarasov, Artem V. and Bokai, Kirill A. and Chikina, Alla and Senkovskiy, Boris V. and Ehlen, Niels and Usachov, Dmitry Yu. and Gruneis, Alexander and Krivenkov, Maxim and Sanchez-Barriga, Jaime and Fedorov, Alexander}, title = {Direct spectroscopic evidence of magnetic proximity effect in MoS2 monolayer on graphene/Co}, series = {ACS nano}, volume = {16}, journal = {ACS nano}, number = {5}, publisher = {American Chemical Society}, address = {Washington}, issn = {1936-0851}, doi = {10.1021/acsnano.1c10391}, pages = {7448 -- 7456}, year = {2022}, abstract = {A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS2) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS2 monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the (Gamma) over bar point and canting of spins at the (K) over bar point in the valence band toward the in-plane direction of cobalt magnetization. Our density functional theory calculations reveal that the in-plane spin component at (K) over bar is localized on Co atoms in the valence band, while in the conduction band it is localized on the MoS2 layer. The calculations also predict a 16 meV spin-splitting at the (Gamma) over bar point and 8 meV (K) over bar-(K) over bar' valley asymmetry for an out-of-plane magnetization. These findings suggest control over optical transitions in MoS2 via Co magnetization. Our estimations show that the magnetic proximity effect is equivalent to the action of the magnetic field as large as 100 T.}, language = {en} } @article{MillerCionideGrijsetal.2022, author = {Miller, Amy E. and Cioni, Maria-Rosa L. and de Grijs, Richard and Sun, Ning-Chen and Bell, Cameron P. M. and Choudhury, Samyaday and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Petr-Gotzens, Monika and Ripepi, Vincenzo and van Loon, Jacco Th.}, title = {The VMC survey - XLVII. Turbulence-controlled hierarchical star formation in the large magellanic cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {512}, journal = {Monthly notices of the Royal Astronomical Society}, number = {1}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac508}, pages = {1196 -- 1213}, year = {2022}, abstract = {We perform a statistical clustering analysis of upper main-sequence stars in the Large Magellanic Cloud (LMC) using data from the Visible and Infrared Survey Telescope for Astronomy survey of the Magellanic Clouds. We map over 2500 young stellar structures at 15 significance levels across similar to 120 square degrees centred on the LMC. The structures have sizes ranging from a few parsecs to over 1 kpc. We find that the young structures follow power-law size and mass distributions. From the perimeter-area relation, we derive a perimeter-area dimension of 1.44 +/- 0.20. From the mass-size relation and the size distribution, we derive two-dimensional fractal dimensions of 1.50 +/- 0.10 and 1.61 +/- 0.20, respectively. We find that the surface density distribution is well represented by a lognormal distribution. We apply the Larson relation to estimate the velocity dispersions and crossing times of these structures. Our results indicate that the fractal nature of the young stellar structures has been inherited from the gas clouds from which they form and that this architecture is generated by supersonic turbulence. Our results also suggest that star formation in the LMC is scale-free from 10 to 700 pc.}, language = {en} } @article{GriggioBedinRaddietal.2022, author = {Griggio, Massimo and Bedin, Luigi R. and Raddi, Roberto and Reindl, Nicole and Tomasella, Lina and Scalco, M. and Salaris, M. and Cassisi, S. and Ochner, P. and Ciroi, S. and Rosati, P. and Nardiello, Domenico and Anderson, J. and Libralato, Mattia and Bellini, A. and Vallenari, A. and Spina, L. and Pedani, M.}, title = {Astro-photometric study of M37 with Gaia and wide-field ugi-imaging}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1920}, pages = {1841 -- 1853}, year = {2022}, abstract = {We present an astrometric and photometric wide-field study of the Galactic open star cluster M37 (NGC 2099). The studied field was observed with ground-based images covering a region of about four square degrees in the Sloan-like filters ugi. We exploited the Gaia catalogue to calibrate the geometric distortion of the large field mosaics, developing software routines that can be also applied to other wide-field instruments. The data are used to identify the hottest white dwarf (WD) member candidates of M37. Thanks to the Gaia EDR3 exquisite astrometry we identified seven such WD candidates, one of which, besides being a high-probability astrometric member, is the putative central star of a planetary nebula. To our knowledge, this is a unique object in an open cluster, and we have obtained follow-up low-resolution spectra that are used for a qualitative characterization of this young WD. Finally, we publicly release a three-colour atlas and a catalogue of the sources in the field of view, which represents a complement of existing material.}, language = {en} } @article{PelisoliDorschHeberetal.2022, author = {Pelisoli, Ingrid and Dorsch, Matti and Heber, Ulrich and G{\"a}nsicke, Boris and Geier, Stephan and Kupfer, Thomas and Nemeth, Peter and Scaringi, Simone and Schaffenroth, Veronika}, title = {Discovery and analysis of three magnetic hot subdwarf stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {515}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stac1069}, pages = {2496 -- 2510}, year = {2022}, abstract = {Magnetic fields can play an important role in stellar evolution. Among white dwarfs, the most common stellar remnant, the fraction of magnetic systems is more than 20 per cent. The origin of magnetic fields in white dwarfs, which show strengths ranging from 40 kG to hundreds of MG, is still a topic of debate. In contrast, only one magnetic hot subdwarf star has been identified out of thousands of known systems. Hot subdwarfs are formed from binary interaction, a process often associated with the generation of magnetic fields, and will evolve to become white dwarfs, which makes the lack of detected magnetic hot subdwarfs a puzzling phenomenon. Here we report the discovery of three new magnetic hot subdwarfs with field strengths in the range 300-500 kG. Like the only previously known system, they are all helium-rich O-type stars (He-sdOs). We analysed multiple archival spectra of the three systems and derived their stellar properties. We find that they all lack radial velocity variability, suggesting formation via a merger channel. However, we derive higher than typical hydrogen abundances for their spectral type, which are in disagreement with current model predictions. Our findings suggest a lower limit to the magnetic fraction of hot subdwarfs of 0.147(+0.143)(-0.047) per cent, and provide evidence for merger-induced magnetic fields which could explain white dwarfs with field strengths of 50-150 MG, assuming magnetic flux conservation.}, language = {en} } @article{BornJohanssonLeitneretal.2022, author = {Born, Artur and Johansson, Fredrik O. L. and Leitner, Torsten and Bidermane, Ieva and Kuehn, Danilo and Martensson, Nils and F{\"o}hlisch, Alexander}, title = {The degree of electron itinerancy and shell closing in the core-ionized state of transition metals probed by Auger-photoelectron coincidence spectroscopy}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {24}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {32}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/d2cp02477b}, pages = {19218 -- 19222}, year = {2022}, abstract = {Auger-photoelectron coincidence spectroscopy (APECS) has been used to examine the electron correlation and itinerance effects in transition metals Cu, Ni and Co. It is shown that the LVV Auger, in coincidence with 2p photoelectrons, spectra can be represented using atomic multiplet positions if the 3d-shell is localized (atomic-like) and with a self-convoluted valence band for band-like (itinerant) materials as explained using the Cini-Sawatzky model. For transition metals, the 3d band changes from band-like to localized with increasing atomic number, with the possibility of a mixed behavior. Our result shows that the LVV spectra of Cu can be represented by atomic multiplet calculations, those of Co resemble the self-convolution of the valence band and those of Ni are a mixture of both, consistent with the Cini-Sawatzky model.}, language = {en} } @article{NeunteufelPreeceKruckowetal.2022, author = {Neunteufel, Patrick and Preece, H. and Kruckow, Matthias U. and Geier, Stephan and Hamers, Adrian S. and Justham, S. and Podsiadlowski, Philipp}, title = {Properties and applications of a predicted population of runaway He-sdO/B stars ejected from single degenerate He-donor SNe}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {663}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/202142864}, pages = {26}, year = {2022}, abstract = {Context. Thermonuclear supernovae (SNe), a subset of which are the highly important SNe of Type Ia and Iax, are relatively poorly understood phenomena. One of the more promising scenarios leading up to the creation of a thermonuclear SN involves accretion of helium-rich material from a binary companion. Following the SN, the binary companion is then ejected from the location of the progenitor binary at velocities possibly large enough to unbind it from the gravitational potential of the Galaxy. Ejected companion stars should form a detectable population, if their production mechanism is not exceedingly rare. Aims. This study builds on previous works, producing the most extensive prediction of the properties of such a hypothetical population to date, taking both Chandrasekhar and non-Chandrasekhar mass events into account. These results are then used to define criteria for membership of this population and characterise putative subpopulations. Methods. This study contains 6 x 10(6) individual ejection trajectories out of the Galactic plane calculated with the stellar kinematics framework SHyRT, which are analysed with regard to their bulk observational properties. These are then put into context with the only previously identified population member US 708 and applied to a number of other possible candidate objects. Results. We find that two additional previously observed objects possess properties to warrant a designation as candidate objects. Characterisation of these object with respect to the predicted population finds all of them to be extreme in at least one astrometric observable. Higher mass ( >0 :7 M-circle dot) objects should be over-represented in the observationally accessible volume, with the ratio of bound to unbound objects being an accessible observable for the determination of the dominant terminal accretor mass. We find that current observations of runaway candidates within 10 kpc support a Galactic SN rate of the order of similar to 3 x 10(-7) yr(-1) to similar to 2 x 10(-6) yr(-1), three orders of magnitude below the inferred Galactic SN Ia rate and two orders of magnitude below the formation rate of predicted He-donor progenitors. Conclusions. The number of currently observed population members suggests that the He-donor scenario, as suspected before, is not a dominant contributor to the number of observed SNe Ia. However, even at the low event rate suggested, we find that the majority of possibly detectable population members is still undetected. The extreme nature of current population members suggests that a still larger number of objects has simply evaded detection up to this point, hinting at a higher contribution than is currently supported by observation.}, language = {en} } @article{StojkoskiSandevKocarevetal.2022, author = {Stojkoski, Viktor and Sandev, Trifce and Kocarev, Ljupco and Pal, Arnab}, title = {Autocorrelation functions and ergodicity in diffusion with stochastic resetting}, series = {Journal of physics : A, Mathematical and theoretical}, volume = {55}, journal = {Journal of physics : A, Mathematical and theoretical}, number = {10}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1751-8113}, doi = {10.1088/1751-8121/ac4ce9}, pages = {22}, year = {2022}, abstract = {Diffusion with stochastic resetting is a paradigm of resetting processes. Standard renewal or master equation approach are typically used to study steady state and other transport properties such as average, mean squared displacement etc. What remains less explored is the two time point correlation functions whose evaluation is often daunting since it requires the implementation of the exact time dependent probability density functions of the resetting processes which are unknown for most of the problems. We adopt a different approach that allows us to write a stochastic solution for a single trajectory undergoing resetting. Moments and the autocorrelation functions between any two times along the trajectory can then be computed directly using the laws of total expectation. Estimation of autocorrelation functions turns out to be pivotal for investigating the ergodic properties of various observables for this canonical model. In particular, we investigate two observables (i) sample mean which is widely used in economics and (ii) time-averaged-mean-squared-displacement (TAMSD) which is of acute interest in physics. We find that both diffusion and drift-diffusion processes with resetting are ergodic at the mean level unlike their reset-free counterparts. In contrast, resetting renders ergodicity breaking in the TAMSD while both the stochastic processes are ergodic when resetting is absent. We quantify these behaviors with detailed analytical study and corroborate with extensive numerical simulations. Our results can be verified in experimental set-ups that can track single particle trajectories and thus have strong implications in understanding the physics of resetting.}, language = {en} } @article{LongNiCaoetal.2022, author = {Long, Minyi and Ni, Binbin and Cao, Xing and Gu, Xudong and Kollmann, Peter and Luo, Qiong and Zhou, Ruoxian and Guo, Yingjie and Guo, Deyu and Shprits, Yuri Y.}, title = {Losses of radiation belt energetic particles by encounters with four of the inner Moons of Jupiter}, series = {Journal of geophysical research, Planets}, volume = {127}, journal = {Journal of geophysical research, Planets}, number = {2}, publisher = {American Geophysical Union}, address = {Washington}, issn = {2169-9097}, doi = {10.1029/2021JE007050}, pages = {13}, year = {2022}, abstract = {Based on an improved model of the moon absorption of Jovian radiation belt particles, we investigate quantitatively and comprehensively the absorption probabilities and particle lifetimes due to encounters with four of the inner moons of Jupiter (Amalthea, Thebe, Io, and Europa) inside L < 10. Our results demonstrate that the resultant average lifetimes of energetic protons and electrons vary dramatically between similar to 0.1 days and well above 1,000 days, showing a strong dependence on the particle equatorial pitch angle, kinetic energy and moon orbit. The average lifetimes of energetic protons and electrons against moon absorption are shortest for Io (i.e., similar to 0.1-10 days) and longest for Thebe (i.e., up to thousands of days), with the lifetimes in between for Europa and Amalthea. Due to the diploe tilt angle absorption effect, the average lifetimes of energetic protons and electrons vary markedly below and above alpha eq \${\alpha }_{\mathrm{e}\mathrm{q}}\$ = 67 degrees. Overall, the average electron lifetimes exhibit weak pitch angle dependence, but the average proton lifetimes are strongly dependent on equatorial pitch angle. The average lifetimes of energetic protons decrease monotonically and substantially with the kinetic energy, but the average lifetimes of energetic electrons are roughly constant at energies 100 GeV) gamma-ray emission observed from a number of supernova remnants (SNRs) indicates particle acceleration to high energies at the shock of the remnants and a potentially significant contribution to Galactic cosmic rays. It is extremely difficult to determine whether protons (through hadronic interactions and subsequent pion decay) or electrons (through inverse Compton scattering on ambient photon fields) are responsible for this emission. For a successful diagnostic, a good understanding of the spatial and energy distribution of the underlying particle population is crucial. Most SNRs are created in core-collapse explosions and expand into the wind bubble of their progenitor stars. This circumstellar medium features a complex spatial distribution of gas and magnetic field which naturally strongly affects the resulting particle population. In this work, we conduct a detailed study of the spectro-spatial evolution of the electrons accelerated at the forward shock of core-collapse SNRs and their nonthermal radiation, using the RATPaC code that is designed for the time- and spatially dependent treatment of particle acceleration at SNR shocks. We focus on the impact of the spatially inhomogeneous magnetic field through the efficiency of diffusion and synchrotron cooling. It is demonstrated that the structure of the circumstellar magnetic field can leave strong signatures in the spectrum and morphology of the resulting nonthermal emission.}, language = {en} } @article{HerzogReppertPudelletal.2022, author = {Herzog, Marc and Reppert, Alexander von and Pudell, Jan-Etienne and Henkel, Carsten and Kronseder, Matthias and Back, Christian H. and Maznev, Alexei A. and Bargheer, Matias}, title = {Phonon-dominated energy transport in purely metallic heterostructures}, series = {Advanced functional materials}, volume = {32}, journal = {Advanced functional materials}, number = {41}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.202206179}, pages = {8}, year = {2022}, abstract = {Ultrafast X-ray diffraction is used to quantify the transport of energy in laser-excited nanoscale gold-nickel (Au-Ni) bilayers. Electron transport and efficient electron-phonon coupling in Ni convert the laser-deposited energy in the conduction electrons within a few picoseconds into a strong non-equilibrium between hot Ni and cold Au phonons at the bilayer interface. Modeling of the subsequent equilibration dynamics within various two-temperature models confirms that for ultrathin Au films, the thermal transport is dominated by phonons instead of conduction electrons because of the weak electron-phonon coupling in Au.}, language = {en} } @article{YanXueJiangetal.2022, author = {Yan, Xiaoli and Xue, Zhike and Jiang, Chaowei and Priest, E. R. and Kliem, Bernhard and Yang, Liheng and Wang, Jincheng and Kong, Defang and Song, Yongliang and Feng, Xueshang and Liu, Zhong}, title = {Fast plasmoid-mediated reconnection in a solar flare}, series = {Nature Communications}, volume = {13}, journal = {Nature Communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-022-28269-w}, pages = {14}, year = {2022}, abstract = {Magnetic reconnection is a multi-faceted process of energy conversion in astrophysical, space and laboratory plasmas that operates at microscopic scales but has macroscopic drivers and consequences. Solar flares present a key laboratory for its study, leaving imprints of the microscopic physics in radiation spectra and allowing the macroscopic evolution to be imaged, yet a full observational characterization remains elusive. Here we combine high resolution imaging and spectral observations of a confined solar flare at multiple wavelengths with data-constrained magnetohydrodynamic modeling to study the dynamics of the flare plasma from the current sheet to the plasmoid scale. The analysis suggests that the flare resulted from the interaction of a twisted magnetic flux rope surrounding a filament with nearby magnetic loops whose feet are anchored in chromospheric fibrils. Bright cusp-shaped structures represent the region around a reconnecting separator or quasi-separator (hyperbolic flux tube). The fast reconnection, which is relevant for other astrophysical environments, revealed plasmoids in the current sheet and separatrices and associated unresolved turbulent motions. Solar flares provide wide range of observational details about fundamental processes involved. Here, the authors show evidence for magnetic reconnection in a strong confined solar flare displaying all four reconnection flows with plasmoids in the current sheet and the separatrices.}, language = {en} } @misc{BullaCoughlinDhawanetal.2022, author = {Bulla, Mattia and Coughlin, Michael W. and Dhawan, Suhail and Dietrich, Tim}, title = {Multi-messenger constraints on the Hubble constant through combination of gravitational waves, gamma-ray bursts and kilonovae from neutron star mergers}, series = {Universe : open access journal}, volume = {8}, journal = {Universe : open access journal}, number = {5}, publisher = {MDPI}, address = {Basel}, issn = {2218-1997}, doi = {10.3390/universe8050289}, pages = {21}, year = {2022}, abstract = {The simultaneous detection of gravitational waves and light from the binary neutron star merger GW170817 led to independent measurements of distance and redshift, providing a direct estimate of the Hubble constant H-0 that does not rely on a cosmic distance ladder, nor assumes a specific cosmological model. By using gravitational waves as "standard sirens", this approach holds promise to arbitrate the existing tension between the H-0 value inferred from the cosmic microwave background and those obtained from local measurements. However, the known degeneracy in the gravitational-wave analysis between distance and inclination of the source led to a H-0 value from GW170817 that was not precise enough to resolve the existing tension. In this review, we summarize recent works exploiting the viewing-angle dependence of the electromagnetic signal, namely the associated short gamma-ray burst and kilonova, to constrain the system inclination and improve on H-0. We outline the key ingredients of the different methods, summarize the results obtained in the aftermath of GW170817 and discuss the possible systematics introduced by each of these methods.}, language = {en} }