@misc{SmithBookhagen2018, author = {Smith, Taylor and Bookhagen, Bodo}, title = {Using passive microwave data to understand spatio-temporal trends and dynamics in snow-water storage in High Mountain Asia}, series = {active and passive microwave remote sensing for environmental monitoring II}, volume = {10788}, journal = {active and passive microwave remote sensing for environmental monitoring II}, publisher = {SPIE-INT Soc Optical Engineering}, address = {Bellingham}, isbn = {978-1-5106-2160-2}, issn = {0277-786X}, doi = {10.1117/12.2323827}, pages = {8}, year = {2018}, abstract = {High Mountain Asia provides water for more than a billion downstream users. Many catchments receive the majority of their yearly water budget in the form of snow - the vast majority of which is not monitored by sparse weather networks. We leverage passive microwave data from the SSMI series of satellites (SSMI, SSMI/S, 1987-2016), reprocessed to 3.125 km resolution, to examine trends in the volume and spatial distribution of snow-water equivalent (SWE) in the Indus Basin. We find that the majority of the Indus has seen an increase in snow-water storage. There exists a strong elevation-trend relationship, where high-elevation zones have more positive SWE trends. Negative trends are confined to the Himalayan foreland and deeply-incised valleys which run into the Upper Indus. This implies a temperature-dependent cutoff below which precipitation increases are not translated into increased SWE. Earlier snowmelt or a higher percentage of liquid precipitation could both explain this cutoff.(1) Earlier work 2 found a negative snow-water storage trend for the entire Indus catchment over the time period 1987-2009 (-4 x 10(-3) mm/yr). In this study based on an additional seven years of data, the average trend reverses to 1.4 x 10(-3). This implies that the decade since the mid-2000s was likely wetter, and positively impacted long-term SWE trends. This conclusion is supported by an analysis of snowmelt onset and end dates which found that while long-term trends are negative, more recent (since 2005) trends are positive (moving later in the year).(3)}, language = {en} } @article{JonesArpWhitmanetal.2017, author = {Jones, Benjamin M. and Arp, Christopher D. and Whitman, Matthew S. and Nigro, Debora and Nitze, Ingmar and Beaver, John and Gadeke, Anne and Zuck, Callie and Liljedahl, Anna and Daanen, Ronald and Torvinen, Eric and Fritz, Stacey and Grosse, Guido}, title = {A lake-centric geospatial database to guide research and inform management decisions in an Arctic watershed in northern Alaska experiencing climate and land-use changes}, series = {AMBIO}, volume = {46}, journal = {AMBIO}, publisher = {Springer}, address = {Dordrecht}, issn = {0044-7447}, doi = {10.1007/s13280-017-0915-9}, pages = {769 -- 786}, year = {2017}, abstract = {Lakes are dominant and diverse landscape features in the Arctic, but conventional land cover classification schemes typically map them as a single uniform class. Here, we present a detailed lake-centric geospatial database for an Arctic watershed in northern Alaska. We developed a GIS dataset consisting of 4362 lakes that provides information on lake morphometry, hydrologic connectivity, surface area dynamics, surrounding terrestrial ecotypes, and other important conditions describing Arctic lakes. Analyzing the geospatial database relative to fish and bird survey data shows relations to lake depth and hydrologic connectivity, which are being used to guide research and aid in the management of aquatic resources in the National Petroleum Reserve in Alaska. Further development of similar geospatial databases is needed to better understand and plan for the impacts of ongoing climate and land-use changes occurring across lake-rich landscapes in the Arctic.}, language = {en} }