@article{VandewalAlbrechtHokeetal.2014, author = {Vandewal, Koen and Albrecht, Steve and Hoke, Eric T. and Graham, Kenneth R. and Widmer, Johannes and Douglas, Jessica D. and Schubert, Marcel and Mateker, William R. and Bloking, Jason T. and Burkhard, George F. and Sellinger, Alan and Frechet, Jean M. J. and Amassian, Aram and Riede, Moritz K. and McGehee, Michael D. and Neher, Dieter and Salleo, Alberto}, title = {Efficient charge generation by relaxed charge-transfer states at organic interfaces}, series = {Nature materials}, volume = {13}, journal = {Nature materials}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/NMAT3807}, pages = {63 -- 68}, year = {2014}, abstract = {carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold viaweakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer: fullerene, small-molecule:C-60 and polymer: polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90\% without the need for excess electronic or vibrational energy.}, language = {en} } @article{CherstvyPetrov2014, author = {Cherstvy, Andrey G. and Petrov, Eugene P.}, title = {Modeling DNA condensation on freestanding cationic lipid membranes}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c3cp53433b}, pages = {2020 -- 2037}, year = {2014}, abstract = {Motivated by recent experimental observations of a rapid spontaneous DNA coil-globule transition on freestanding cationic lipid bilayers, we propose simple theoretical models for DNA condensation on cationic lipid membranes. First, for a single DNA rod, we examine the conditions of full wrapping of a cylindrical DNA-like semi-flexible polyelectrolyte by an oppositely charged membrane. Then, for two parallel DNA rods, we self-consistently analyze the shape and the extent of the membrane enveloping them, focusing on membrane elastic deformations and the membrane-DNA embracing angle, which enables us to compute the membrane-mediated DNA-DNA interactions. We examine the effects of the membrane composition and its charge density, which are the experimentally tunable parameters. We show that membrane-driven rod-rod attraction is more pronounced for higher charge densities and for smaller surface tensions of the membrane. Thus, we demonstrate that for a long DNA chain adhered to a cationic lipid membrane, such membrane-induced DNA-DNA attraction can trigger compaction of DNA.}, language = {en} } @article{TuWang2014, author = {Tu, Rui and Wang, Li}, title = {Real-time coseismic wave retrieving by integrated Kalman filter with observations of GPS, Glonass and strong-motion sensor}, series = {Advances in space research}, volume = {53}, journal = {Advances in space research}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0273-1177}, doi = {10.1016/j.asr.2013.10.011}, pages = {130 -- 137}, year = {2014}, abstract = {A method of real-time coseismic wave retrieving was proposed based on the tight integration of GPS, Glonass and strong-motion sensor observations, the validation and precision analysis have been made by an experimental data. The series of results have been shown that: by the integrated Kalman filter and multi-sensors, the coseismic waves can be optimally recovered by complement the advantages of each other, especially when the observation conditions are very bad. In additional, the results are not significantly effected by different receiver clock error processes for the integration solution.}, language = {en} } @article{KustererNagelHartmannetal.2014, author = {Kusterer, D. -J. and Nagel, T. and Hartmann, S. and Werner, K. and Feldmeier, Achim}, title = {Monte Carlo radiation transfer in CV disk winds: application to the AM CVn prototype}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {561}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201321438}, pages = {10}, year = {2014}, abstract = {Context. AMCVn systems are ultracompact binaries in which a (semi-) degenerate star transfers helium-dominated matter onto a white dwarf. They are effective gravitational-wave emitters and potential progenitors of Type Ia supernovae. Aims. To understand the evolution of AMCVn systems it is necessary to determine their mass-loss rate through their radiation-driven accretion-disk wind. We constructed models to perform quantitative spectroscopy of P Cygni line profiles that were detected in UV spectra. Methods. We performed 2.5D Monte Carlo radiative transfer calculations in hydrodynamic wind structures by making use of realistic NLTE spectra from the accretion disk and by accounting for the white dwarf as an additional photon source. Results. We present first results from calculations in which LTE opacities are used in the wind model. A comparison with UV spectroscopy of the AMCVn prototype shows that the modeling procedure is potentially a good tool for determining mass-loss rates and abundances of trace metals in the helium-rich wind.}, language = {en} } @article{Wendt2014, author = {Wendt, Martin}, title = {Constraints on variations of m(p)/m(e) based on UVES observations of H-2}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312008}, pages = {106 -- 112}, year = {2014}, abstract = {This article summarizes the latest results on the proton-to-electron mass ratio derived from H-2 observations at high redshift in the light of possible variations of fundamental physical constants. The focus lies on UVES observations of the past years as enormous progress was achieved since the first positive results on / were published. With the better understanding of systematics, dedicated observation runs, and numerous approaches to improve wavelength calibration accuracy, all current findings are in reasonable good agreement with no variation and provide an upper limit of / < 1 x 10(-5) for the redshift range of 2 < z < 3. ((}, language = {en} } @article{RichterFoxBenBekhtietal.2014, author = {Richter, Philipp and Fox, Andrew J. and Ben Bekhti, Nadya and Murphy, M. T. and Bomans, Dominik J. and Frank, S.}, title = {High-resolution absorption spectroscopy of the circumgalactic medium of the Milky Way}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312013}, pages = {92 -- 98}, year = {2014}, language = {en} } @article{BonifacioRahmaniWhitmoreetal.2014, author = {Bonifacio, P. and Rahmani, H. and Whitmore, J. B. and Wendt, Martin and Centurion, Martin and Molaro, P. and Srianand, R. and Murphy, M. T. and Petitjean, P. and Agafonova, I. I. and Evans, T. M. and Levshakov, S. A. and Lopez, S. and Martins, C. J. A. P. and Reimers, D. and Vladilo, G.}, title = {Fundamental constants and high-resolution spectroscopy}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312005}, pages = {83 -- 91}, year = {2014}, language = {en} } @article{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity}, series = {Soft matter}, volume = {10}, journal = {Soft matter}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c3sm52846d}, pages = {1591 -- 1601}, year = {2014}, abstract = {We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.}, language = {en} } @article{MkrtchianHenkel2014, author = {Mkrtchian, Vanik E. and Henkel, Carsten}, title = {On non-equilibrium photon distributions in the Casimir effect}, series = {Annalen der Physik}, volume = {526}, journal = {Annalen der Physik}, number = {1-2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0003-3804}, doi = {10.1002/andp.201300135}, pages = {87 -- 101}, year = {2014}, abstract = {The electromagnetic field in a typical geometry of the Casimir effect is described in the Schwinger-Keldysh formalism. The main result is the photon distribution function (Keldysh Green function) in any stationary state of the field. A two-plate geometry with a sliding interface in local equilibrium is studied in detail, and full agreement with the results of Rytov fluctuation electrodynamics is found.}, language = {en} } @article{LiuTkachovKomberetal.2014, author = {Liu, W. and Tkachov, R. and Komber, H. and Senkovskyy, V. and Schubert, M. and Wei, Z. and Facchetti, A. and Neher, Dieter and Kiriy, A.}, title = {Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors}, series = {Polymer Chemistry}, volume = {5}, journal = {Polymer Chemistry}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c3py01707a}, pages = {3404 -- 3411}, year = {2014}, abstract = {Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to M-w approximate to 50 kg mol(-1) and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32-45\%) in all-polymer solar cells compared to NDI-based materials (15-30\%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells.}, language = {en} } @article{AlbrechtLevermann2014, author = {Albrecht, Torsten and Levermann, Anders}, title = {Fracture-induced softening for large-scale ice dynamics}, series = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, volume = {8}, journal = {The Cryosphere : TC ; an interactive open access journal of the European Geosciences Union}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {1994-0416}, doi = {10.5194/tc-8-587-2014}, pages = {587 -- 605}, year = {2014}, abstract = {Floating ice shelves can exert a retentive and hence stabilizing force onto the inland ice sheet of Antarctica. However, this effect has been observed to diminish by the dynamic effects of fracture processes within the protective ice shelves, leading to accelerated ice flow and hence to a sea-level contribution. In order to account for the macroscopic effect of fracture processes on large-scale viscous ice dynamics (i.e., ice-shelf scale) we apply a continuum representation of fractures and related fracture growth into the prognostic Parallel Ice Sheet Model (PISM) and compare the results to observations. To this end we introduce a higher order accuracy advection scheme for the transport of the two-dimensional fracture density across the regular computational grid. Dynamic coupling of fractures and ice flow is attained by a reduction of effective ice viscosity proportional to the inferred fracture density. This formulation implies the possibility of non-linear threshold behavior due to self-amplified fracturing in shear regions triggered by small variations in the fracture-initiation threshold. As a result of prognostic flow simulations, sharp across-flow velocity gradients appear in fracture-weakened regions. These modeled gradients compare well in magnitude and location with those in observed flow patterns. This model framework is in principle expandable to grounded ice streams and provides simple means of investigating climate-induced effects on fracturing (e. g., hydro fracturing) and hence on the ice flow. It further constitutes a physically sound basis for an enhanced fracture-based calving parameterization.}, language = {en} } @article{SchleussnerRungeLehmannetal.2014, author = {Schleussner, Carl-Friedrich and Runge, Jakob and Lehmann, Jasvcha and Levermann, Anders}, title = {The role of the North Atlantic overturning and deep ocean for multi-decadal global-mean-temperature variability}, series = {Earth system dynamics}, volume = {5}, journal = {Earth system dynamics}, number = {1}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-5-103-2014}, pages = {103 -- 115}, year = {2014}, language = {en} } @article{deCarvalhoMetzlerCherstvy2014, author = {de Carvalho, Sidney J. and Metzler, Ralf and Cherstvy, Andrey G.}, title = {Critical adsorption of polyelectrolytes onto charged Janus nanospheres}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {29}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c4cp02207f}, pages = {15539 -- 15550}, year = {2014}, abstract = {Based on extensive Monte Carlo simulations and analytical considerations we study the electrostatically driven adsorption of flexible polyelectrolyte chains onto charged Janus nanospheres. These net-neutral colloids are composed of two equally but oppositely charged hemispheres. The critical binding conditions for polyelectrolyte chains are analysed as function of the radius of the Janus particle and its surface charge density, as well as the salt concentration in the ambient solution. Specifically for the adsorption of finite-length polyelectrolyte chains onto Janus nanoparticles, we demonstrate that the critical adsorption conditions drastically differ when the size of the Janus particle or the screening length of the electrolyte are varied. We compare the scaling laws obtained for the adsorption-desorption threshold to the known results for uniformly charged spherical particles, observing significant disparities. We also contrast the changes to the polyelectrolyte chain conformations close to the surface of the Janus nanoparticles as compared to those for simple spherical particles. Finally, we discuss experimentally relevant physicochemical systems for which our simulations results may become important. In particular, we observe similar trends with polyelectrolyte complexation with oppositely but heterogeneously charged proteins.}, language = {en} } @article{DiFlorioBruendermannYadavallietal.2014, author = {Di Florio, G. and Bruendermann, E. and Yadavalli, Nataraja Sekhar and Santer, Svetlana and Havenith, Martina}, title = {Confocal raman microscopy and AFM study of the interface between the photosensitive polymer layer and multilayer graphene}, series = {Soft materials}, volume = {12}, journal = {Soft materials}, publisher = {Taylor \& Francis Group}, address = {Philadelphia}, issn = {1539-445X}, doi = {10.1080/1539445X.2014.945040}, pages = {S98 -- S105}, year = {2014}, abstract = {In this paper we report on the interaction between photosensitive azobenzene-containing polymer films and on top adsorbed graphene multilayers. The photosensitive polymer film changes its topography under irradiation with light interference patterns according to their polarization distribution. The multilayer graphene follows the deformation of the polymer film and stretches accordingly. Using confocal Raman microspectroscopy we can detect the appearance of additional peaks in the Raman spectrum of the photosensitive polymer film upon irradiation indicating a molecular interaction at the interface between the graphene multilayer and the polymer matrix. Multi-component analysis of the specific Raman bands shows that the interaction involves the graphene rings and the aromatic rings of the azobenzenes causing the strong adhesion between the two materials.}, language = {en} } @article{EhlertLevermann2014, author = {Ehlert, D. and Levermann, Anders}, title = {Mechanism for potential strengthening of Atlantic overturning prior to collapse}, series = {Earth system dynamics}, volume = {5}, journal = {Earth system dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-5-383-2014}, pages = {383 -- 397}, year = {2014}, abstract = {The Atlantic meridional overturning circulation (AMOC) carries large amounts of heat into the North Atlantic influencing climate regionally as well as globally. Palaeo-records and simulations with comprehensive climate models suggest that the positive salt-advection feedback may yield a threshold behaviour of the system. That is to say that beyond a certain amount of freshwater flux into the North Atlantic, no meridional overturning circulation can be sustained. Concepts of monitoring the AMOC and identifying its vicinity to the threshold rely on the fact that the volume flux defining the AMOC will be reduced when approaching the threshold. Here we advance conceptual models that have been used in a paradigmatic way to understand the AMOC, by introducing a density-dependent parameterization for the Southern Ocean eddies. This additional degree of freedom uncovers a mechanism by which the AMOC can increase with additional freshwater flux into the North Atlantic, before it reaches the threshold and collapses: an AMOC that is mainly wind-driven will have a constant upwelling as long as the Southern Ocean winds do not change significantly. The downward transport of tracers occurs either in the northern sinking regions or through Southern Ocean eddies. If freshwater is transported, either atmospherically or via horizontal gyres, from the low to high latitudes, this would reduce the eddy transport and by continuity increase the northern sinking which defines the AMOC until a threshold is reached at which the AMOC cannot be sustained. If dominant in the real ocean this mechanism would have significant consequences for monitoring the AMOC.}, language = {en} } @article{LevermannWinkelmannNowickietal.2014, author = {Levermann, Anders and Winkelmann, Ricarda and Nowicki, S. and Fastook, J. L. and Frieler, Katja and Greve, R. and Hellmer, H. H. and Martin, M. A. and Meinshausen, Malte and Mengel, Matthias and Payne, A. J. and Pollard, D. and Sato, T. and Timmermann, R. and Wang, Wei Li and Bindschadler, Robert A.}, title = {Projecting antarctic ice discharge using response functions from SeaRISE ice-sheet models}, series = {Earth system dynamics}, volume = {5}, journal = {Earth system dynamics}, number = {2}, publisher = {Copernicus}, address = {G{\"o}ttingen}, issn = {2190-4979}, doi = {10.5194/esd-5-271-2014}, pages = {271 -- 293}, year = {2014}, abstract = {The largest uncertainty in projections of future sea-level change results from the potentially changing dynamical ice discharge from Antarctica. Basal ice-shelf melting induced by a warming ocean has been identified as a major cause for additional ice flow across the grounding line. Here we attempt to estimate the uncertainty range of future ice discharge from Antarctica by combining uncertainty in the climatic forcing, the oceanic response and the ice-sheet model response. The uncertainty in the global mean temperature increase is obtained from historically constrained emulations with the MAGICC-6.0 (Model for the Assessment of Greenhouse gas Induced Climate Change) model. The oceanic forcing is derived from scaling of the subsurface with the atmospheric warming from 19 comprehensive climate models of the Coupled Model Intercomparison Project (CMIP-5) and two ocean models from the EU-project Ice2Sea. The dynamic ice-sheet response is derived from linear response functions for basal ice-shelf melting for four different Antarctic drainage regions using experiments from the Sea-level Response to Ice Sheet Evolution (SeaRISE) intercomparison project with five different Antarctic ice-sheet models. The resulting uncertainty range for the historic Antarctic contribution to global sea-level rise from 1992 to 2011 agrees with the observed contribution for this period if we use the three ice-sheet models with an explicit representation of ice-shelf dynamics and account for the time-delayed warming of the oceanic subsurface compared to the surface air temperature. The median of the additional ice loss for the 21st century is computed to 0.07 m (66\% range: 0.02-0.14 m; 90\% range: 0.0-0.23 m) of global sea-level equivalent for the low-emission RCP-2.6 (Representative Concentration Pathway) scenario and 0.09 m (66\% range: 0.04-0.21 m; 90\% range: 0.01-0.37 m) for the strongest RCP-8.5. Assuming no time delay between the atmospheric warming and the oceanic subsurface, these values increase to 0.09 m (66\% range: 0.04-0.17 m; 90\% range: 0.02-0.25 m) for RCP-2.6 and 0.15 m (66\% range: 0.07-0.28 m; 90\% range: 0.04-0.43 m) for RCP-8.5. All probability distributions are highly skewed towards high values. The applied ice-sheet models are coarse resolution with limitations in the representation of grounding-line motion. Within the constraints of the applied methods, the uncertainty induced from different ice-sheet models is smaller than that induced by the external forcing to the ice sheets.}, language = {en} } @article{Stephan2014, author = {Stephan, Christoph A.}, title = {A dark sector extension of the almost-commutative standard model}, series = {International journal of modern physics : A, Particles and fields, gravitation, cosmology, nuclear physics}, volume = {29}, journal = {International journal of modern physics : A, Particles and fields, gravitation, cosmology, nuclear physics}, number = {1}, publisher = {World Scientific}, address = {Singapore}, issn = {0217-751X}, doi = {10.1142/S0217751X14500055}, pages = {30}, year = {2014}, abstract = {We consider an extension of the Standard Model within the framework of Noncommutative Geometry. The model is based on an older model [C. A. Stephan, Phys. Rev. D 79, 065013 (2009)] which extends the Standard Model by new fermions, a new U(1)-gauge group and, crucially, a new scalar field which couples to the Higgs field. This new scalar field allows to lower the mass of the Higgs mass from similar to 170 GeV, as predicted by the Spectral Action for the Standard Model, to a value of 120-130 GeV. The shortcoming of the previous model lay in its inability to meet all the constraints on the gauge couplings implied by the Spectral Action. These shortcomings are cured in the present model which also features a "dark sector" containing fermions and scalar particles.}, language = {en} } @article{AliuArchambaultAuneetal.2014, author = {Aliu, E. and Archambault, S. and Aune, T. and Behera, B. and Beilicke, M. and Benbow, W. and Berger, K. and Bird, R. and Bouvier, A. and Buckley, J. H. and Bugaev, V. and Byrum, K. and Cerruti, M. and Chen, X. and Ciupik, L. and Connolly, M. P. and Cui, W. and Duke, C. and Dumm, J. and Errando, M. and Falcone, A. and Federici, S. and Feng, Q. and Finley, J. P. and Fortin, P. and Fortson, L. and Furniss, A. and Galante, N. and Gillanders, G. H. and Griffin, S. and Griffiths, S. T. and Grube, J. and Gyuk, G. and Hanna, D. and Holder, J. and Hughes, G. and Humensky, T. B. and Kaaret, P. and Kertzman, M. and Khassen, Y. and Kieda, D. and Krawczynski, H. and Krennrich, F. and Lang, M. J. and Madhavan, A. S. and Maier, G. and Majumdar, P. and McCann, A. and Moriarty, P. and Mukherjee, R. and Nieto, D. and Ong, R. A. and Otte, A. N. and Park, N. and Perkins, J. S. and Pohl, M. and Popkow, A. and Prokoph, H. and Quinn, J. and Ragan, K. and Rajotte, J. and Reyes, L. C. and Reynolds, P. T. and Richards, G. T. and Roache, E. and Rousselle, J. and Sembroski, G. H. and Sheidaei, F. and Skole, C. and Smith, A. W. and Staszak, D. and Stroh, M. and Telezhinsky, Igor O. and Theiling, M. and Tucci, J. V. and Tyler, J. and Varlotta, A. and Vincent, S. and Wakely, S. P. and Weinstein, A. and Welsing, R. and Williams, D. A. and Zajczyk, A. and Zitzer, B. and Abramowski, Attila and Aharonian, Felix A. and Benkhali, Faical Ait and Akhperjanian, A. G. and Ang{\"u}ner, Ekrem Oǧuzhan and Anton, Gisela and Balenderan, Shangkari and Balzer, Arnim and Barnacka, Anna and Becherini, Yvonne and Tjus, J. Becker and Bernl{\"o}hr, K. and Birsin, E. and Bissaldi, E. and Biteau, Jonathan and Boettcher, Markus and Boisson, Catherine and Bolmont, J. and Bordas, Pol and Brucker, J. and Brun, Francois and Brun, Pierre and Bulik, Tomasz and Carrigan, Svenja and Casanova, Sabrina and Cerruti, M. and Chadwick, Paula M. and Chalme-Calvet, R. and Chaves, Ryan C. G. and Cheesebrough, A. and Chretien, M. and Colafrancesco, Sergio and Cologna, Gabriele and Conrad, Jan and Couturier, C. and Dalton, M. and Daniel, M. K. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Dickinson, H. J. and Djannati-Ata{\"i}, A. and Domainko, W. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Grondin, M. -H. and Grudzinska, M. and Haeffner, S. and Hahn, J. and Harris, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, James Anthony and Hofmann, W. and Hofverberg, P. and Holler, M. and Horns, D. and Jacholkowska, A. and Jahn, C. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kaufmann, S. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kneiske, T. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lennarz, D. and Lohse, T. and Lopatin, A. and Lu, C. -C. and Marandon, V. and Marcowith, Alexandre and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and McComb, T. J. L. and Mehault, J. and Menzler, U. and Meyer, M. and Moderski, R. and Mohamed, M. and Moulin, Emmanuel and Murach, T. and Naumann, C. L. and de Naurois, M. and Niemiec, J. and Nolan, S. J. and Oakes, L. and Ohm, S. and Wilhelmi, E. de Ona and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Perez, J. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Raue, M. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rob, L. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Sanchez, David M. and Santangelo, Andrea and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwarzburg, S. and Schwemmer, S. and Sol, H. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, Iurii and Szostek, A. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Valerius, K. and van Eldik, C. and Vasileiadis, G. and Venter, C. and Viana, A. and Vincent, P. and Voelk, H. J. and Volpe, F. and Vorster, M. and Wagner, S. J. and Wagner, P. and Ward, M. and Weidinger, M. and Weitzel, Q. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Zacharias, M. and Zajczyk, A. and Zdziarski, A. A. and Zech, Alraune and Zechlin, H. -S.}, title = {Long-term TeV and X-RAY observations of the GAMMA- RAY binary hess J0632+057}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {780}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, organization = {VERITAS Collaboration, HESS Collaboration}, issn = {0004-637X}, doi = {10.1088/0004-637X/780/2/168}, pages = {14}, year = {2014}, language = {en} } @article{EmelianovaKuznetsovTurukina2014, author = {Emelianova, Yulia P. and Kuznetsov, A. P. and Turukina, Ludmila V.}, title = {Quasi-periodic bifurcations and "amplitude death" in low-dimensional ensemble of van der Pol oscillators}, series = {Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics}, volume = {378}, journal = {Modern physics letters : A, Particles and fields, gravitation, cosmology, nuclear physics}, number = {3}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0375-9601}, doi = {10.1016/j.physleta.2013.10.049}, pages = {153 -- 157}, year = {2014}, abstract = {The dynamics of the four dissipatively coupled van der Pol oscillators is considered. Lyapunov chart is presented in the parameter plane. Its arrangement is discussed. We discuss the bifurcations of tori in the system at large frequency detuning of the oscillators. Here are quasi-periodic saddle-node, Hopf and Neimark-Sacker bifurcations. The effect of increase of the threshold for the "amplitude death" regime and the possibilities of complete and partial broadband synchronization are revealed.}, language = {en} } @article{NavirianSchickGaaletal.2014, author = {Navirian, Hengameh A. and Schick, Daniel and Gaal, Peter and Leitenberger, Wolfram and Shayduk, Roman and Bargheer, Matias}, title = {Thermoelastic study of nanolayered structures using time-resolved X-ray diffraction at high repetition rate}, series = {Applied physics letters}, volume = {104}, journal = {Applied physics letters}, number = {2}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0003-6951}, doi = {10.1063/1.4861873}, pages = {4}, year = {2014}, abstract = {We investigate the thermoelastic response of a nanolayered sample composed of a metallic SrRuO3 electrode sandwiched between a ferroelectric Pb(Zr0.2Ti0.8)O-3 film with negative thermal expansion and a SrTiO3 substrate. SrRuO3 is rapidly heated by fs-laser pulses with 208 kHz repetition rate. Diffraction of X-ray pulses derived from a synchrotron measures the transient out-of-plane lattice constant c of all three materials simultaneously from 120 ps to 5 mu s with a relative accuracy up to Delta c/c = 10(-6). The in-plane propagation of sound is essential for understanding the delayed out-of-plane compression of Pb(Zr0.2Ti0.8)O-3.}, language = {en} }