@article{ToySutherlandTownendetal.2017, author = {Toy, Virginia Gail and Sutherland, Rupert and Townend, John and Allen, Michael J. and Becroft, Leeza and Boles, Austin and Boulton, Carolyn and Carpenter, Brett and Cooper, Alan and Cox, Simon C. and Daube, Christopher and Faulkner, D. R. and Halfpenny, Angela and Kato, Naoki and Keys, Stephen and Kirilova, Martina and Kometani, Yusuke and Little, Timothy and Mariani, Elisabetta and Melosh, Benjamin and Menzies, Catriona D. and Morales, Luiz and Morgan, Chance and Mori, Hiroshi and Niemeijer, Andre and Norris, Richard and Prior, David and Sauer, Katrina and Schleicher, Anja Maria and Shigematsu, Norio and Teagle, Damon A. H. and Tobin, Harold and Valdez, Robert and Williams, Jack and Yeo, Samantha and Baratin, Laura-May and Barth, Nicolas and Benson, Adrian and Boese, Carolin and C{\´e}l{\´e}rier, Bernard and Chamberlain, Calum J. and Conze, Ronald and Coussens, Jamie and Craw, Lisa and Doan, Mai-Linh and Eccles, Jennifer and Grieve, Jason and Grochowski, Julia and Gulley, Anton and Howarth, Jamie and Jacobs, Katrina and Janku-Capova, Lucie and Jeppson, Tamara and Langridge, Robert and Mallyon, Deirdre and Marx, Ray and Massiot, C{\´e}cile and Mathewson, Loren and Moore, Josephine and Nishikawa, Osamu and Pooley, Brent and Pyne, Alex and Savage, Martha K. and Schmitt, Doug and Taylor-Offord, Sam and Upton, Phaedra and Weaver, Konrad C. and Wiersberg, Thomas and Zimmer, Martin}, title = {Bedrock geology of DFDP-2B, central Alpine Fault, New Zealand}, series = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, volume = {60}, journal = {New Zealand journal of geology and geophysics : an international journal of the geoscience of New Zealand, the Pacific Rim, and Antarctica ; NZJG}, number = {4}, publisher = {Taylor \& Francis}, address = {Abingdon}, organization = {DFDP-2 Sci Team}, issn = {0028-8306}, doi = {10.1080/00288306.2017.1375533}, pages = {497 -- 518}, year = {2017}, abstract = {During the second phase of the Alpine Fault, Deep Fault Drilling Project (DFDP) in the Whataroa River, South Westland, New Zealand, bedrock was encountered in the DFDP-2B borehole from 238.5-893.2 m Measured Depth (MD). Continuous sampling and meso- to microscale characterisation of whole rock cuttings established that, in sequence, the borehole sampled amphibolite facies, Torlesse Composite Terrane-derived schists, protomylonites and mylonites, terminating 200-400 m above an Alpine Fault Principal Slip Zone (PSZ) with a maximum dip of 62°. The most diagnostic structural features of increasing PSZ proximity were the occurrence of shear bands and reduction in mean quartz grain sizes. A change in composition to greater mica:quartz + feldspar, most markedly below c. 700 m MD, is inferred to result from either heterogeneous sampling or a change in lithology related to alteration. Major oxide variations suggest the fault-proximal Alpine Fault alteration zone, as previously defined in DFDP-1 core, was not sampled.}, language = {en} } @article{EmbersonGalyHovius2017, author = {Emberson, Robert and Galy, Albert and Hovius, Niels}, title = {Combined effect of carbonate and biotite dissolution in landslides biases silicate weathering proxies}, series = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, volume = {213}, journal = {Geochimica et cosmochimica acta : journal of the Geochemical Society and the Meteoritical Society}, publisher = {Elsevier}, address = {Oxford}, issn = {0016-7037}, doi = {10.1016/j.gca.2017.07.014}, pages = {418 -- 434}, year = {2017}, abstract = {Long-term estimates of the dissolution of silicate rock are generally derived from a range of isotopic proxies, such as the radiogenic strontium isotope ratio (Sr-87/Sr-86), which are preserved in sediment archives. For these systems to fairly represent silicate weathering, the changes in isotopic ratios in terrestrial surface waters should correspond to changes in the overall silicate dissolution. This assumes that the silicate mineral phases that act as sources of a given isotope dissolve at a rate that is proportional to the overall silicate weathering. Bedrock landsliding exhumes large quantities of fresh rock for weathering in transient storage, and rapid weathering in these deposits is controlled primarily by dissolution of the most reactive phases. In this study, we test the hypothesis that preferential weathering of these labile minerals can decouple the dissolution of strontium sources from the actual silicate weathering rates in the rapidly eroding Western Southern Alps (WSA) of New Zealand. We find that rapid dissolution of relatively radiogenic calcite and biotite in landslides leads to high local fluxes in strontium with isotopic ratios that offer no clear discrimination between sources. These higher fluxes of radiogenic strontium are in contrast to silicate weathering rates in landslides that are not systematically elevated. On a mountain belt scale, radiogenic strontium fluxes are not coupled to volumes of recent landslides in large (>100 km(2)) catchments, but silicate weathering fluxes are. Such decoupling is likely due first to the broad variability in the strontium content of carbonate minerals, and second to the combination of radiogenic strontium released from both biotite and carbonate in recent landslides. This study supports previous work suggesting the limited utility of strontium isotopes as a system to study silicate weathering in the WSA. Crucially however, in settings where bedrock landsliding is a dominant erosive process there is potential for both random and systematic bias in isotope proxies if the most reactive phases exposed for dissolution by landslides disproportionately contribute to the proxy of choice. This clearly suggests that the isotopic composition of marine Sr is a proxy for periods of rapid mountain uplift and erosion rather than for the associated enhanced silicate weathering. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} }