@phdthesis{Devers2011, author = {Devers, Emanuel}, title = {Phosphate homeostasis and novel microRNAs are involved in the regulation of the arbuscular mycorrhizal symbiosis in Medicago truncatula}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-55572}, school = {Universit{\"a}t Potsdam}, year = {2011}, abstract = {Die arbuskul{\"a}re Mykorrhiza ist die wahrscheinlich {\"a}lteste Form der Wurzelsymbiosen zwischen Pflanzen und Pilzen und hat sich vor 420 Millionen Jahren entwickelt. In dieser Symbiose, die zwischen nahezu allen Landpflanzen und Pilzen des Reiches Glomeromycota ausgebildet wird, versorgt der Pilz die Pflanze mit N{\"a}hrstoffen, wobei die verbesserte Versorgung mit Phosphat f{\"u}r die Pflanze sicher den gr{\"o}ßten Vorteil darstellt. Im Gegenzug erh{\"a}lt der Pilz Zucker, welche die Pflanze aus der Photosynthese bereitstellt. Zu hohe Phosphatkonzentrationen im Boden oder D{\"u}nger f{\"u}hren allerdings zu einer Verringerung in der Auspr{\"a}gung der arbuskul{\"a}ren Mykorrhiza. Diese Unterdr{\"u}ckung der Symbiose wird nicht durch eine lokale Reaktion der Wurzeln ausgel{\"o}st, sondern in erster Linie durch einen hohen Phosphatgehalt im Pflanzenspross. Somit handelt es sich also um eine systemische, also dem Gesamtsystem „Pflanze" betreffende Antwort. Die molekularen Mechanismen dieser Anpassung sind noch wenig bekannt und sind vor allem f{\"u}r die Agrarwirtschaft von besonderem Interesse. Eine Mikro-RNA (miRNA) des bereits bekannten Phosphathom{\"o}ostasesignalwegs (PHR1-miRNA399-PHO2 Signalweg) akkumuliert verst{\"a}rkt in mykorrhizierten Wurzeln. Das deutet daraufhin, dass dieser Signalweg und diese miRNA eine wichtige Rolle in der Regulation der arbuskul{\"a}ren Mykorrhiza spielen. Ziel dieser Studie war es neue Einblicke in die molekularen Mechanismen, die zur Unterdr{\"u}ckung der arbuskul{\"a}ren Mykorrhiza bei hohen Phosphatkonzentrationen f{\"u}hren, zu gewinnen. Dabei sollte der Einfluss von PHO2, sowie von miRNAs in dieser Symbiose genauer untersucht werden. Ein funktionelles Ortholog von PHO2, MtPho2, wurde in der Pflanze Medicago truncatula identifiziert. MtPho2-Mutanten, welche nicht mehr in der Lage waren ein funktionales PHO2 Protein zu exprimieren, zeigten schnellere Kolonisierung durch den AM-Pilz. Jedoch wurde auch in den mtpho2-Mutanten die Symbiose durch hohe Phosphatkonzentrationen unterdr{\"u}ckt. Dies bedeutet, dass PHO2 und somit der PHR1-miRNA399-PHO2 Signalweg eine wichtige Funktion w{\"a}hrend der fortschreitenden Kolonisierung der Wurzel durch den Pilz hat, aber und weitere Mechanismen in der Unterd{\"u}ckung der Symbiose bei hohen Phosphatkonzentrationen beteiligt sein m{\"u}ssen. Die Analyse von Transkriptionsprofilen von Spross- und Wurzeln mittels Microarrays zeigte, dass die Unterdr{\"u}ckung der AM Symbiose durch hohe Phosphatkonzentrationen m{\"o}glicherweise auf eine Unterdr{\"u}ckung der Expression einer Reihe symbiosespezifischer Gene im Spross der Pflanze beruht. Um die Rolle weiterer miRNA in der AM Symbiose zu untersuchen, wurden mittels einer Hochdurchsatz-Sequenzierung 243 neue und 181 aus anderen Pflanzen bekannte miRNAs in M. truncatula entdeckt. Zwei dieser miRNAs, miR5229 und miR160f*, sind ausschließlich w{\"a}hrend der arbuskul{\"a}ren Mykorrhiza zu finden und weitere miRNAs werden w{\"a}hrend dieser Symbiose verst{\"a}rkt gebildet. Interessanterweise f{\"u}hren einige dieser miRNAs zum Abbau von Transkripten, die eine wichtige Funktion in der arbuskul{\"a}ren Mykorrhiza und Wurzelkn{\"o}llchensymbiose besitzen. Die Ergebnisse dieser Studie liefern eine neue Grundlage f{\"u}r die Untersuchung von regulatorischen Netzwerken, die zur zellul{\"a}ren Umprogrammierung w{\"a}hrend der Interaktion zwischen Pflanzen und arbuskul{\"a}ren Mykorrhiza-Pilzen bei verschiedenen Phosphatbedingungen f{\"u}hren.}, language = {en} } @phdthesis{Ott2005, author = {Ott, Thomas}, title = {Functional genomics of nodulins in the model legume Lotus japonicus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-5298}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {During this PhD project three technical platforms were either improved or newly established in order to identify interesting genes involved in SNF, validate their expression and functionally characterise them. An existing 5.6K cDNA array (Colebatch et al., 2004) was extended to produce the 9.6K LjNEST array, while a second array, the 11.6K LjKDRI array, was also produced. Furthermore, the protocol for array hybridisation was substantially improved (Ott et al., in press). After functional classification of all clones according to the MIPS database and annotation of their corresponding tentative consensus sequence (TIGR) these cDNA arrays were used by several international collaborators and by our group (Krusell et al., 2005; in press). To confirm results obtained from the cDNA array analysis different sets of cDNA pools were generated that facilitate rapid qRT-PCR analysis of candidate gene expression. As stable transformation of Lotus japonicus takes several months, an Agrobacterium rhizogenes transformation system was established in the lab and growth conditions for screening transformants for symbiotic phenotypes were improved. These platforms enable us to identify genes, validate their expression and functionally characterise them in the minimum of time. The resources that I helped to establish, were used in collaboration with other people to characterise several genes like the potassium transporter LjKup and the sulphate transporter LjSst1, that were transcriptionally induced in nodules compared to uninfected roots, in more detail (Desbrosses et al., 2004; Krusell et al., 2005). Another gene that was studied in detail was LjAox1. This gene was identified during cDNA array experiments and detailed expression analysis revealed a strong and early induction of the gene during nodulation with high expression in young nodules which declines with the age of the nodule. Therefore, LjAox1 is an early nodulin. Promoter:gus fusions revealed an LjAox1 expression around the nodule endodermis. The physiological role of LjAox1 is currently being persued via RNAi. Using RNA interference, the synthesis of all symbiotic leghemoglobins was silenced simultaneously in Lotus japonicus. As a result, growth of LbRNAi lines was severely inhibited compared to wild-type plants when plants were grown under symbiotic conditions in the absence of mineral nitrogen. The nodules of these plants were arrested in growth 14 post inoculation and lacked the characteristic pinkish colour. Growing these transgenic plants in conditions where reduced nitrogen is available for the plant led to normal plant growth and development. This demonstrates that leghemoglobins are not required for plant development per se, and proves for the first time that leghemoglobins are indispensable for symbiotic nitrogen fixation. Absence of leghemoglobins in LbRNAi nodules led to significant increases in free-oxygen concentrations throughout the nodules, a decrease in energy status as reflected by the ATP/ADP ratio, and an absence of the bacterial nitrogenase protein. The bacterial population within nodules of LbRNAi plants was slightly reduced. Alterations of plant nitrogen and carbon metabolism in LbRNAi nodules was reflected in changes in amino acid composition and starch deposition (Ott et al., 2005). These data provide strong evidence that nodule leghemoglobins function as oxygen transporters that facilitate high flux rates of oxygen to the sites of respiration at low free oxygen concentrations within the infected cells.}, subject = {Lotus japonicus}, language = {en} }