@article{BhatMilicicThieulinPardoetal.2017, author = {Bhat, Javaid Y. and Milicic, Goran and Thieulin-Pardo, Gabriel and Bracher, Andreas and Maxwell, Andrew and Ciniawsky, Susanne and M{\"u}ller-Cajar, Oliver and Engen, John R. and Hartl, F. Ulrich and Wendler, Petra and Hayer-Hartl, Manajit}, title = {Mechanism of Enzyme Repair by the AAA(+) Chaperone Rubisco Activase}, series = {Molecular cell}, volume = {67}, journal = {Molecular cell}, publisher = {Cell Press}, address = {Cambridge}, issn = {1097-2765}, doi = {10.1016/j.molcel.2017.07.004}, pages = {744 -- 756}, year = {2017}, abstract = {How AAA(+) chaperones conformationally remodel specific target proteins in an ATP-dependent manner is not well understood. Here, we investigated the mechanism of the AAA(+) protein Rubisco activase (Rca) in metabolic repair of the photosynthetic enzyme Rubisco, a complex of eight large (RbcL) and eight small (RbcS) subunits containing eight catalytic sites. Rubisco is prone to inhibition by tight-binding sugar phosphates, whose removal is catalyzed by Rca. We engineered a stable Rca hexamer ring and analyzed its functional interaction with Rubisco. Hydrogen/deuterium exchange and chemical crosslinking showed that Rca structurally destabilizes elements of the Rubisco active site with remarkable selectivity. Cryo-electron microscopy revealed that Rca docks onto Rubisco over one active site at a time, positioning the C-terminal strand of RbcL, which stabilizes the catalytic center, for access to the Rca hexamer pore. The pulling force of Rca is fine-tuned to avoid global destabilization and allow for precise enzyme repair.}, language = {en} }