@article{RodriguezSanchezWucherpfennigRischkeetal.2023, author = {Rodr{\´i}guez S{\´a}nchez, Alejandra and Wucherpfennig, Julian and Rischke, Ramona and Iacus, Stefano Maria}, title = {Search-and-rescue in the Central Mediterranean Route does not induce migration}, series = {Scientific reports}, volume = {13}, journal = {Scientific reports}, number = {1}, publisher = {Macmillan Publishers Limited, part of Springer Nature}, address = {London}, issn = {2045-2322}, doi = {10.1038/s41598-023-38119-4}, pages = {1}, year = {2023}, abstract = {State- and private-led search-and-rescue are hypothesized to foster irregular migration (and thereby migrant fatalities) by altering the decision calculus associated with the journey. We here investigate this 'pull factor' claim by focusing on the Central Mediterranean route, the most frequented and deadly irregular migration route towards Europe during the past decade. Based on three intervention periods—(1) state-led Mare Nostrum, (2) private-led search-and-rescue, and (3) coordinated pushbacks by the Libyan Coast Guard—which correspond to substantial changes in laws, policies, and practices of search-and-rescue in the Mediterranean, we are able to test the 'pull factor' claim by employing an innovative machine learning method in combination with causal inference. We employ a Bayesian structural time-series model to estimate the effects of these three intervention periods on the migration flow as measured by crossing attempts (i.e., time-series aggregate counts of arrivals, pushbacks, and deaths), adjusting for various known drivers of irregular migration. We combine multiple sources of traditional and non-traditional data to build a synthetic, predicted counterfactual flow. Results show that our predictive modeling approach accurately captures the behavior of the target time-series during the various pre-intervention periods of interest. A comparison of the observed and predicted counterfactual time-series in the post-intervention periods suggest that pushback policies did affect the migration flow, but that the search-and-rescue periods did not yield a discernible difference between the observed and the predicted counterfactual number of crossing attempts. Hence we do not find support for search-and-rescue as a driver of irregular migration. In general, this modeling approach lends itself to forecasting migration flows with the goal of answering causal queries in migration research.}, language = {en} } @article{MalchowBocediPalmeretal.2021, author = {Malchow, Anne-Kathleen and Bocedi, Greta and Palmer, Stephen C. F. and Travis, Justin M. J. and Zurell, Damaris}, title = {RangeShiftR}, series = {Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos}, volume = {44}, journal = {Ecography : pattern and diversity in ecology / Nordic Ecologic Society Oikos}, number = {10}, publisher = {Wiley-Blackwell}, address = {Oxford [u.a.]}, issn = {1600-0587}, doi = {10.1111/ecog.05689}, pages = {1443 -- 1452}, year = {2021}, abstract = {Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models.}, language = {en} } @article{GrimmSeyfarthMihoubGruberetal.2018, author = {Grimm-Seyfarth, Annegret and Mihoub, Jean-Baptiste and Gruber, Bernd and Henle, Klaus}, title = {Some like it hot}, series = {Ecological monographs}, volume = {88}, journal = {Ecological monographs}, number = {3}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1301}, pages = {336 -- 352}, year = {2018}, abstract = {Accumulating evidence has demonstrated considerable impact of climate change on biodiversity, with terrestrial ectotherms being particularly vulnerable. While climate-induced range shifts are often addressed in the literature, little is known about the underlying ecological responses at individual and population levels. Using a 30-yr monitoring study of the long-living nocturnal gecko Gehyra variegata in arid Australia, we determined the relative contribution of climatic factors acting locally (temperature, rainfall) or distantly (La Nina induced flooding) on ecological processes ranging from traits at the individual level (body condition, body growth) to the demography at population level (survival, sexual maturity, population sizes). We also investigated whether thermoregulatory activity during both active (night) and resting (daytime) periods of the day can explain these responses. Gehyra variegata responded to local and distant climatic effects. Both high temperatures and high water availability enhanced individual and demographic parameters. Moreover, the impact of water availability was scale independent as local rainfall and La Nina induced flooding compensated each other. When water availability was low, however, extremely high temperatures delayed body growth and sexual maturity while survival of individuals and population sizes remained stable. This suggests a trade-off with traits at the individual level that may potentially buffer the consequences of adverse climatic conditions at the population level. Moreover, hot temperatures did not impact nocturnal nor diurnal behavior. Instead, only cool temperatures induced diurnal thermoregulatory behavior with individuals moving to exposed hollow branches and even outside tree hollows for sun-basking during the day. Since diurnal behavioral thermoregulation likely induced costs on fitness, this could decrease performance at both individual and population level under cool temperatures. Our findings show that water availability rather than high temperature is the limiting factor in our focal population of G.variegata. In contrast to previous studies, we stress that drier rather than warmer conditions are expected to be detrimental for nocturnal desert reptiles. Identifying the actual limiting climatic factors at different scales and their functional interactions at different ecological levels is critical to be able to predict reliably future population dynamics and support conservation planning in arid ecosystems.}, language = {en} } @article{MalchowBocediPalmeretal.2021, author = {Malchow, Anne-Kathleen and Bocedi, Greta and Palmer, Stephen C. F. and Travis, Justin M. J. and Zurell, Damaris}, title = {RangeShiftR: an R package for individual-based simulation of spatial eco-evolutionary dynamics and speciesu0027 responses to environmental changes}, series = {Ecography}, volume = {44}, journal = {Ecography}, number = {10}, publisher = {John Wiley \& Sons, Inc.}, address = {New Jersey}, issn = {1600-0587}, pages = {10}, year = {2021}, abstract = {Reliably modelling the demographic and distributional responses of a species to environmental changes can be crucial for successful conservation and management planning. Process-based models have the potential to achieve this goal, but so far they remain underused for predictions of species' distributions. Individual-based models offer the additional capability to model inter-individual variation and evolutionary dynamics and thus capture adaptive responses to environmental change. We present RangeShiftR, an R implementation of a flexible individual-based modelling platform which simulates eco-evolutionary dynamics in a spatially explicit way. The package provides flexible and fast simulations by making the software RangeShifter available for the widely used statistical programming platform R. The package features additional auxiliary functions to support model specification and analysis of results. We provide an outline of the package's functionality, describe the underlying model structure with its main components and present a short example. RangeShiftR offers substantial model complexity, especially for the demographic and dispersal processes. It comes with elaborate tutorials and comprehensive documentation to facilitate learning the software and provide help at all levels. As the core code is implemented in C++, the computations are fast. The complete source code is published under a public licence, making adaptations and contributions feasible. The RangeShiftR package facilitates the application of individual-based and mechanistic modelling to eco-evolutionary questions by operating a flexible and powerful simulation model from R. It allows effortless interoperation with existing packages to create streamlined workflows that can include data preparation, integrated model specification and results analysis. Moreover, the implementation in R strengthens the potential for coupling RangeShiftR with other models.}, language = {en} } @article{RosenbaumRaatzWeithoffetal.2019, author = {Rosenbaum, Benjamin and Raatz, Michael and Weithoff, Guntram and Fussmann, Gregor F. and Gaedke, Ursula}, title = {Estimating parameters from multiple time series of population dynamics using bayesian inference}, series = {Frontiers in ecology and evolution}, volume = {6}, journal = {Frontiers in ecology and evolution}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2018.00234}, pages = {14}, year = {2019}, abstract = {Empirical time series of interacting entities, e.g., species abundances, are highly useful to study ecological mechanisms. Mathematical models are valuable tools to further elucidate those mechanisms and underlying processes. However, obtaining an agreement between model predictions and experimental observations remains a demanding task. As models always abstract from reality one parameter often summarizes several properties. Parameter measurements are performed in additional experiments independent of the ones delivering the time series. Transferring these parameter values to different settings may result in incorrect parametrizations. On top of that, the properties of organisms and thus the respective parameter values may vary considerably. These issues limit the use of a priori model parametrizations. In this study, we present a method suited for a direct estimation of model parameters and their variability from experimental time series data. We combine numerical simulations of a continuous-time dynamical population model with Bayesian inference, using a hierarchical framework that allows for variability of individual parameters. The method is applied to a comprehensive set of time series from a laboratory predator-prey system that features both steady states and cyclic population dynamics. Our model predictions are able to reproduce both steady states and cyclic dynamics of the data. Additionally to the direct estimates of the parameter values, the Bayesian approach also provides their uncertainties. We found that fitting cyclic population dynamics, which contain more information on the process rates than steady states, yields more precise parameter estimates. We detected significant variability among parameters of different time series and identified the variation in the maximum growth rate of the prey as a source for the transition from steady states to cyclic dynamics. By lending more flexibility to the model, our approach facilitates parametrizations and shows more easily which patterns in time series can be explained also by simple models. Applying Bayesian inference and dynamical population models in conjunction may help to quantify the profound variability in organismal properties in nature.}, language = {en} } @article{PennekampIlesGarlandetal.2019, author = {Pennekamp, Frank and Iles, Alison C. and Garland, Joshua and Brennan, Georgina and Brose, Ulrich and Gaedke, Ursula and Jacob, Ute and Kratina, Pavel and Matthews, Blake and Munch, Stephan and Novak, Mark and Palamara, Gian Marco and Rall, Bjorn C. and Rosenbaum, Benjamin and Tabi, Andrea and Ward, Colette and Williams, Richard and Ye, Hao and Petchey, Owen L.}, title = {The intrinsic predictability of ecological time series and its potential to guide forecasting}, series = {Ecological monographs : a publication of the Ecological Society of America.}, volume = {89}, journal = {Ecological monographs : a publication of the Ecological Society of America.}, number = {2}, publisher = {Wiley}, address = {Hoboken}, issn = {0012-9615}, doi = {10.1002/ecm.1359}, pages = {17}, year = {2019}, language = {en} } @article{RaatzvanVelzenGaedke2019, author = {Raatz, Michael and van Velzen, Ellen and Gaedke, Ursula}, title = {Co-adaptation impacts the robustness of predator-prey dynamics against perturbations}, series = {Ecology and Evolution}, volume = {9}, journal = {Ecology and Evolution}, number = {7}, publisher = {John Wiley \& Sons}, address = {Hoboken, NJ}, issn = {2045-7758}, doi = {10.1002/ece3.5006}, pages = {3823 -- 3836}, year = {2019}, abstract = {Global change threatens the maintenance of ecosystem functions that are shaped by the persistence and dynamics of populations. It has been shown that the persistence of species increases if they possess larger trait adaptability. Here, we investigate whether trait adaptability also affects the robustness of population dynamics of interacting species and thereby shapes the reliability of ecosystem functions that are driven by these dynamics. We model co-adaptation in a predator-prey system as changes to predator offense and prey defense due to evolution or phenotypic plasticity. We investigate how trait adaptation affects the robustness of population dynamics against press perturbations to environmental parameters and against pulse perturbations targeting species abundances and their trait values. Robustness of population dynamics is characterized by resilience, elasticity, and resistance. In addition to employing established measures for resilience and elasticity against pulse perturbations (extinction probability and return time), we propose the warping distance as a new measure for resistance against press perturbations, which compares the shapes and amplitudes of pre- and post-perturbation population dynamics. As expected, we find that the robustness of population dynamics depends on the speed of adaptation, but in nontrivial ways. Elasticity increases with speed of adaptation as the system returns more rapidly to the pre-perturbation state. Resilience, in turn, is enhanced by intermediate speeds of adaptation, as here trait adaptation dampens biomass oscillations. The resistance of population dynamics strongly depends on the target of the press perturbation, preventing a simple relationship with the adaptation speed. In general, we find that low robustness often coincides with high amplitudes of population dynamics. Hence, amplitudes may indicate the robustness against perturbations also in other natural systems with similar dynamics. Our findings show that besides counteracting extinctions, trait adaptation indeed strongly affects the robustness of population dynamics against press and pulse perturbations.}, language = {en} } @article{ImholtReilEccardetal.2015, author = {Imholt, Christian and Reil, Daniela and Eccard, Jana and Jacob, Daniela and Hempelmann, Nils and Jacob, Jens}, title = {Quantifying the past and future impact of climate on outbreak patterns of bank voles (Myodes glareolus)}, series = {Pest management science}, volume = {71}, journal = {Pest management science}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1526-498X}, doi = {10.1002/ps.3838}, pages = {166 -- 172}, year = {2015}, abstract = {BACKGROUND Central European outbreak populations of the bank vole (Myodes glareolus Schreber) are known to cause damage in forestry and to transmit the most common type of Hantavirus (Puumala virus, PUUV) to humans. A sound estimation of potential effects of future climate scenarios on population dynamics is a prerequisite for long-term management strategies. Historic abundance time series were used to identify the key weather conditions associated with bank vole abundance, and were extrapolated to future climate scenarios to derive potential long-term changes in bank vole abundance dynamics. RESULTS Classification and regression tree analysis revealed the most relevant weather parameters associated with high and low bank vole abundances. Summer temperatures 2 years prior to trapping had the highest impact on abundance fluctuation. Extrapolation of the identified parameters to future climate conditions revealed an increase in years with high vole abundance. CONCLUSION Key weather patterns associated with vole abundance reflect the importance of superabundant food supply through masting to the occurrence of bank vole outbreaks. Owing to changing climate, these outbreaks are predicted potentially to increase in frequency 3-4-fold by the end of this century. This may negatively affect damage patterns in forestry and the risk of human PUUV infection in the long term. (c) 2014 Society of Chemical Industry}, language = {en} } @article{BauerVosKlauschiesetal.2014, author = {Bauer, Barbara and Vos, Matthijs and Klauschies, Toni and Gaedke, Ursula}, title = {Diversity, functional similarity, and top-down control drive synchronization and the reliability of ecosystem function}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {183}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {3}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/674906}, pages = {394 -- 409}, year = {2014}, abstract = {The concept that diversity promotes reliability of ecosystem function depends on the pattern that community-level biomass shows lower temporal variability than species-level biomasses. However, this pattern is not universal, as it relies on compensatory or independent species dynamics. When in contrast within--trophic level synchronization occurs, variability of community biomass will approach population-level variability. Current knowledge fails to integrate how species richness, functional distance between species, and the relative importance of predation and competition combine to drive synchronization at different trophic levels. Here we clarify these mechanisms. Intense competition promotes compensatory dynamics in prey, but predators may at the same time increasingly synchronize, under increasing species richness and functional similarity. In contrast, predators and prey both show perfect synchronization under strong top-down control, which is promoted by a combination of low functional distance and high net growth potential of predators. Under such conditions, community-level biomass variability peaks, with major negative consequences for reliability of ecosystem function.}, language = {en} } @article{MartinJagerNisbetetal.2014, author = {Martin, Benjamin and Jager, Tjalling and Nisbet, Roger M. and Preuss, Thomas G. and Grimm, Volker}, title = {Limitations of extrapolating toxic effects on reproduction to the population level}, series = {Ecological applications : a publication of the Ecological Society of America}, volume = {24}, journal = {Ecological applications : a publication of the Ecological Society of America}, number = {8}, publisher = {Wiley}, address = {Washington}, issn = {1051-0761}, doi = {10.1890/14-0656.1}, pages = {1972 -- 1983}, year = {2014}, abstract = {For the ecological risk assessment of toxic chemicals, standardized tests on individuals are often used as proxies for population-level effects. Here, we address the utility of one commonly used metric, reproductive output, as a proxy for population-level effects. Because reproduction integrates the outcome of many interacting processes (e.g., feeding, growth, allocation of energy to reproduction), the observed toxic effects in a reproduction test could be due to stress on one of many processes. Although this makes reproduction a robust endpoint for detecting stress, it may mask important population-level consequences if the different physiological processes stress affects are associated with different feedback mechanisms at the population level. We therefore evaluated how an observed reduction in reproduction found in a standard reproduction test translates to effects at the population level if it is caused by hypothetical toxicants affecting different physiological processes (physiological modes of action; PMoA). For this we used two consumer-resource models: the Yodzis-Innes (YI) model, which is mathematically tractable, but requires strong assumptions of energetic equivalence among individuals as they progress through ontogeny, and an individual-based implementation of dynamic energy budget theory (DEB-IBM), which relaxes these assumptions at the expense of tractability. We identified two important feedback mechanisms controlling the link between individual- and population-level stress in the YI model. These mechanisms turned out to also be important for interpreting some of the individual-based model results; for two PMoAs, they determined the population response to stress in both models. In contrast, others stress types involved more complex feedbacks, because they asymmetrically stressed the production efficiency of reproduction and somatic growth. The feedbacks associated with different PMoAs drastically altered the link between individual- and population-level effects. For example, hypothetical stressors with different PMoAs that had equal effects on reproduction had effects ranging from a negligible decline in biomass to population extinction. Thus, reproduction tests alone are of little use for extrapolating toxicity to the population level, but we showed that the ecological relevance of standard tests could easily be improved if growth is measured along with reproduction.}, language = {en} } @article{ItonagaKoeppenPlathetal.2011, author = {Itonaga, Naomi and K{\"o}ppen, Ulrich and Plath, Martin and Wallschl{\"a}ger, Hans-Dieter}, title = {Declines in breeding site fidelity in an increasing population of White Storks Ciconia ciconia}, series = {IBIS}, volume = {153}, journal = {IBIS}, number = {3}, publisher = {Wiley-Blackwell}, address = {Malden}, issn = {0019-1019}, pages = {636 -- 639}, year = {2011}, abstract = {Following a steep decline, White Stork Ciconia ciconia populations in Germany are currently increasing, allowing us to examine potential density-dependent effects on breeding dispersal. Our data suggest that the proportion of breeding dispersers has increased over time, indicating a density-dependent component in nest-site fidelity that may be linked to increased competition.}, language = {en} } @misc{SiblyGrimmMartinetal.2013, author = {Sibly, Richard M. and Grimm, Volker and Martin, Benjamin T. and Johnston, Alice S. A. and Kulakowska, Katarzyna and Topping, Christopher J. and Calow, Peter and Nabe-Nielsen, Jacob and Thorbek, Pernille and DeAngelis, Donald L.}, title = {Representing the acquisition and use of energy by individuals in agent-based models of animal populations}, series = {Methods in ecology and evolution : an official journal of the British Ecological Society}, volume = {4}, journal = {Methods in ecology and evolution : an official journal of the British Ecological Society}, number = {2}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {2041-210X}, doi = {10.1111/2041-210x.12002}, pages = {151 -- 161}, year = {2013}, abstract = {Agent-based models (ABMs) are widely used to predict how populations respond to changing environments. As the availability of food varies in space and time, individuals should have their own energy budgets, but there is no consensus as to how these should be modelled. Here, we use knowledge of physiological ecology to identify major issues confronting the modeller and to make recommendations about how energy budgets for use in ABMs should be constructed. Our proposal is that modelled animals forage as necessary to supply their energy needs for maintenance, growth and reproduction. If there is sufficient energy intake, an animal allocates the energy obtained in the order: maintenance, growth, reproduction, energy storage, until its energy stores reach an optimal level. If there is a shortfall, the priorities for maintenance and growth/reproduction remain the same until reserves fall to a critical threshold below which all are allocated to maintenance. Rates of ingestion and allocation depend on body mass and temperature. We make suggestions for how each of these processes should be modelled mathematically. Mortality rates vary with body mass and temperature according to known relationships, and these can be used to obtain estimates of background mortality rate. If parameter values cannot be obtained directly, then values may provisionally be obtained by parameter borrowing, pattern-oriented modelling, artificial evolution or from allometric equations. The development of ABMs incorporating individual energy budgets is essential for realistic modelling of populations affected by food availability. Such ABMs are already being used to guide conservation planning of nature reserves and shell fisheries, to assess environmental impacts of building proposals including wind farms and highways and to assess the effects on nontarget organisms of chemicals for the control of agricultural pests.}, language = {en} } @article{MartinJagerNisbetetal.2013, author = {Martin, Benjamin T. and Jager, Tjalling and Nisbet, Roger M. and Preuss, Thomas G. and Grimm, Volker}, title = {Predicting population dynamics from the properties of individuals - a cross-level test of dynamic energy budget theory}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {181}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {4}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/669904}, pages = {506 -- 519}, year = {2013}, abstract = {Individual-based models (IBMs) are increasingly used to link the dynamics of individuals to higher levels of biological organization. Still, many IBMs are data hungry, species specific, and time-consuming to develop and analyze. Many of these issues would be resolved by using general theories of individual dynamics as the basis for IBMs. While such theories have frequently been examined at the individual level, few cross-level tests exist that also try to predict population dynamics. Here we performed a cross-level test of dynamic energy budget (DEB) theory by parameterizing an individual-based model using individual-level data of the water flea, Daphnia magna, and comparing the emerging population dynamics to independent data from population experiments. We found that DEB theory successfully predicted population growth rates and peak densities but failed to capture the decline phase. Further assumptions on food-dependent mortality of juveniles were needed to capture the population dynamics after the initial population peak. The resulting model then predicted, without further calibration, characteristic switches between small-and large-amplitude cycles, which have been observed for Daphnia. We conclude that cross-level tests help detect gaps in current individual-level theories and ultimately will lead to theory development and the establishment of a generic basis for individual-based models and ecology.}, language = {en} } @article{MassieRyabovBlasiusetal.2013, author = {Massie, Thomas Michael and Ryabov, Alexei and Blasius, Bernd and Weithoff, Guntram and Gaedke, Ursula}, title = {Complex transient dynamics of stage-structured populations in response to environmental changes}, series = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, volume = {182}, journal = {The American naturalist : a bi-monthly journal devoted to the advancement and correlation of the biological sciences}, number = {1}, publisher = {Univ. of Chicago Press}, address = {Chicago}, issn = {0003-0147}, doi = {10.1086/670590}, pages = {103 -- 119}, year = {2013}, abstract = {Stage structures of populations can have a profound influence on their dynamics. However, not much is known about the transient dynamics that follow a disturbance in such systems. Here we combined chemostat experiments with dynamical modeling to study the response of the phytoplankton species Chlorella vulgaris to press perturbations. From an initially stable steady state, we altered either the concentration or dilution rate of a growth-limiting resource. This disturbance induced a complex transient response-characterized by the possible onset of oscillations-before population numbers relaxed to a new steady state. Thus, cell numbers could initially change in the opposite direction of the long-term change. We present quantitative indexes to characterize the transients and to show that the dynamic response is dependent on the degree of synchronization among life stages, which itself depends on the state of the population before perturbation. That is, we show how identical future steady states can be approached via different transients depending on the initial population structure. Our experimental results are supported by a size-structured model that accounts for interplay between cell-cycle and population-level processes and that includes resource-dependent variability in cell size. Our results should be relevant to other populations with a stage structure including organisms of higher order.}, language = {en} }