@phdthesis{Hoelscher2020, author = {Hoelscher, Matthijs Pieter}, title = {The production of antimicrobial polypeptides in chloroplasts}, school = {Universit{\"a}t Potsdam}, pages = {xiii, 114}, year = {2020}, abstract = {Plants are an attractive platform for the production of medicinal compounds because of their potential to generate large amounts of biomass cheaply. The use of chloroplast transformation is an attractive way to achieve the recombinant production of proteins in plants, because of the chloroplasts' high capacity to produce foreign proteins in comparison to nuclear transformed plants. In this thesis, the production of two different types of antimicrobial polypeptides in chloroplasts is explored. The first example is the production of the potent HIV entry inhibitor griffithsin. Griffithsin has the potential to prevent HIV infections by blocking the entry of the virus into human cells. Here the use of transplastomic plants as an inexpensive production method for griffithsin was explored. Transplastomic plants grew healthily and were able to accumulate griffithsin to up to 5\% of the total soluble protein. Griffithsin could easily be purified from tobacco leaf tissue and had a similarly high neutralization activity as griffithsin recombinantly produced in bacteria. Griffithsin could be purified from dried tobacco leaves, demonstrating that dried leaves could be used as a storable starting material for griffithsin purification, circumventing the need for immediate purification after harvest. The second example is the production of antimicrobial peptides (AMPs) that have the capacity to kill bacteria and are an attractive alternative to currently used antibiotics that are increasingly becoming ineffective. The production of antimicrobial peptides was considerably more challenging than the production of griffithsin. Small AMPs are prone to degradation in plastids. This problem was overcome by fusing AMPs to generate larger polypeptides. In one approach, AMPs were fused to each other to increase size and combine the mode of action of multiple AMPs. This improved the accumulation of AMPs but also resulted in impaired plant growth. This was solved by the use of two different inducible systems, which could largely restore plant growth. Fusions of multiple AMPs were insoluble and could not be purified. In addition to fusing AMPs to each other, the fusion of AMPs to small ubiquitin-like modifier (SUMO), was tested as an approach to improve the accumulation, facilitate purification, and reduce the toxicity of AMPs to chloroplasts. Fusion of AMPs to SUMO indeed increased accumulation while reducing the toxicity to the plants. SUMO fusions produced inside chloroplasts could be purified, and SUMO could be efficiently cleaved off with the SUMO protease. Such fusions therefore provide a promising strategy for the production of AMPs and other small polypeptides inside chloroplasts.}, language = {en} } @article{SchweigertGerickeWolframetal.2006, author = {Schweigert, Florian J. and Gericke, Beate and Wolfram, Wiebke and Kaisers, Udo and Dudenhausen, Joachim W.}, title = {Peptide and protein profiles in serum and follicular fluid of women undergoing IVF}, series = {Human reproduction}, volume = {21}, journal = {Human reproduction}, number = {11}, publisher = {Univ. Press}, address = {Oxford}, issn = {0268-1161}, doi = {10.1093/humrep/del257}, pages = {2960 -- 2968}, year = {2006}, abstract = {BACKGROUND: Proteins and peptides in human follicular fluid originate from plasma or are produced by follicular structures. Compositional changes reflect oocyte maturation and can be used as diagnostic markers. The aim of the study was to determine protein and peptide profiles in paired serum and follicular fluid samples from women undergoing IVF. METHODS: Surface-enhanced laser desorption and ionization-time of flight-mass spectrometry (SELDI-TOF-MS) was used to obtain characteristic protein pattern. RESULTS: One hundred and eighty-six individual MS signals were obtained from a combination of enrichment on strong anion exchanger (110), weak cation exchanger (52) and normal phase surfaces (24). On the basis of molecular masses, isoelectric points and immunoreactivety, four signals were identified as haptoglobin (alpha(1)- and alpha(2)-chain), haptoglobin 1 and transthyretin (TTR). Immunological and MS characteristics of the TTR : retinol-binding protein (RBP) transport complex revealed no microheterogeneity differences between serum and follicular fluid. Discriminatory patterns arising from decision-tree-based classification and regression analysis distinguished between serum and follicular fluid with a sensitivity and specificity of 100\%. CONCLUSIONS: Quantitative and qualitative differences indicate selective transport processes rather than mere filtration across the blood-follicle barrier. Identified proteins as well as characteristic peptide and/or protein signatures might emerge as potential candidates for diagnostic markers of follicle and/or oocyte maturation and thus oocyte quality.}, language = {en} }