@article{NwosuRoeserYangetal.2021, author = {Nwosu, Ebuka Canisius and Roeser, Patricia Angelika and Yang, Sizhong and Ganzert, Lars and Dellwig, Olaf and Pinkerneil, Sylvia and Brauer, Achim and Dittmann, Elke and Wagner, Dirk and Liebner, Susanne}, title = {From water into sediment-tracing freshwater cyanobacteria via DNA analyses}, series = {Microorganisms : open access journal}, volume = {9}, journal = {Microorganisms : open access journal}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2076-2607}, doi = {10.3390/microorganisms9081778}, pages = {20}, year = {2021}, abstract = {Sedimentary ancient DNA-based studies have been used to probe centuries of climate and environmental changes and how they affected cyanobacterial assemblages in temperate lakes. Due to cyanobacteria containing potential bloom-forming and toxin-producing taxa, their approximate reconstruction from sediments is crucial, especially in lakes lacking long-term monitoring data. To extend the resolution of sediment record interpretation, we used high-throughput sequencing, amplicon sequence variant (ASV) analysis, and quantitative PCR to compare pelagic cyanobacterial composition to that in sediment traps (collected monthly) and surface sediments in Lake Tiefer See. Cyanobacterial composition, species richness, and evenness was not significantly different among the pelagic depths, sediment traps and surface sediments (p > 0.05), indicating that the cyanobacteria in the sediments reflected the cyanobacterial assemblage in the water column. However, total cyanobacterial abundances (qPCR) decreased from the metalimnion down the water column. The aggregate-forming (Aphanizomenon) and colony-forming taxa (Snowella) showed pronounced sedimentation. In contrast, Planktothrix was only very poorly represented in sediment traps (meta- and hypolimnion) and surface sediments, despite its highest relative abundance at the thermocline (10 m water depth) during periods of lake stratification (May-October). We conclude that this skewed representation in taxonomic abundances reflects taphonomic processes, which should be considered in future DNA-based paleolimnological investigations.}, language = {en} } @article{NwosuRoeserYangetal.2021, author = {Nwosu, Ebuka Canisius and Roeser, Patricia Angelika and Yang, Sizhong and Pinkerneil, Sylvia and Ganzert, Lars and Dittmann, Elke and Brauer, Achim and Wagner, Dirk and Liebner, Susanne}, title = {Species-level spatio-temporal dynamics of cyanobacteria in a hard-water temperate lake in the Southern Baltics}, series = {Frontiers in microbiology}, volume = {12}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2021.761259}, pages = {17}, year = {2021}, abstract = {Cyanobacteria are important primary producers in temperate freshwater ecosystems. However, studies on the seasonal and spatial distribution of cyanobacteria in deep lakes based on high-throughput DNA sequencing are still rare. In this study, we combined monthly water sampling and monitoring in 2019, amplicon sequence variants analysis (ASVs; a proxy for different species) and quantitative PCR targeting overall cyanobacteria abundance to describe the seasonal and spatial dynamics of cyanobacteria in the deep hard-water oligo-mesotrophic Lake Tiefer See, NE Germany. We observed significant seasonal variation in the cyanobacterial community composition (p < 0.05) in the epi- and metalimnion layers, but not in the hypolimnion. In winter-when the water column is mixed-picocyanobacteria (Synechococcus and Cyanobium) were dominant. With the onset of stratification in late spring, we observed potential niche specialization and coexistence among the cyanobacteria taxa driven mainly by light and nutrient dynamics. Specifically, ASVs assigned to picocyanobacteria and the genus Planktothrix were the main contributors to the formation of deep chlorophyll maxima along a light gradient. While Synechococcus and different Cyanobium ASVs were abundant in the epilimnion up to the base of the euphotic zone from spring to fall, Planktothrix mainly occurred in the metalimnetic layer below the euphotic zone where also overall cyanobacteria abundance was highest in summer. Our data revealed two potentially psychrotolerant (cold-adapted) Cyanobium species that appear to cope well under conditions of lower hypolimnetic water temperature and light as well as increasing sediment-released phosphate in the deeper waters in summer. The potential cold-adapted Cyanobium species were also dominant throughout the water column in fall and winter. Furthermore, Snowella and Microcystis-related ASVs were abundant in the water column during the onset of fall turnover. Altogether, these findings suggest previously unascertained and considerable spatiotemporal changes in the community of cyanobacteria on the species level especially within the genus Cyanobium in deep hard-water temperate lakes.}, language = {en} } @article{MantzoukiBekliogluBrookesetal.2018, author = {Mantzouki, Evanthia and Beklioglu, Meryem and Brookes, Justin D. and Domis, Lisette Nicole de Senerpont and Dugan, Hilary A. and Doubek, Jonathan P. and Grossart, Hans-Peter and Nejstgaard, Jens C. and Pollard, Amina I. and Ptacnik, Robert and Rose, Kevin C. and Sadro, Steven and Seelen, Laura and Skaff, Nicholas K. and Teubner, Katrin and Weyhenmeyer, Gesa A. and Ibelings, Bastiaan W.}, title = {Snapshot surveys for lake monitoring, more than a shot in the dark}, series = {Frontiers in Ecology and Evolution}, volume = {6}, journal = {Frontiers in Ecology and Evolution}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {2296-701X}, doi = {10.3389/fevo.2018.00201}, pages = {5}, year = {2018}, language = {en} }