@article{IlicicGrossart2022, author = {Ilicic, Doris and Grossart, Hans-Peter}, title = {Basal parasitic fungi in marine food webs-a mystery yet to unravel}, series = {Journal of Fungi}, volume = {8}, journal = {Journal of Fungi}, number = {2}, publisher = {MDPI}, address = {Basel}, issn = {2309-608X}, doi = {10.3390/jof8020114}, pages = {16}, year = {2022}, abstract = {Although aquatic and parasitic fungi have been well known for more than 100 years, they have only recently received increased awareness due to their key roles in microbial food webs and biogeochemical cycles. There is growing evidence indicating that fungi inhabit a wide range of marine habitats, from the deep sea all the way to surface waters, and recent advances in molecular tools, in particular metagenome approaches, reveal that their diversity is much greater and their ecological roles more important than previously considered. Parasitism constitutes one of the most widespread ecological interactions in nature, occurring in almost all environments. Despite that, the diversity of fungal parasites, their ecological functions, and, in particular their interactions with other microorganisms remain largely speculative, unexplored and are often missing from current theoretical concepts in marine ecology and biogeochemistry. In this review, we summarize and discuss recent research avenues on parasitic fungi and their ecological potential in marine ecosystems, e.g., the fungal shunt, and emphasize the need for further research.}, language = {en} } @article{ScholzVoigt2022, author = {Scholz, Carolin and Voigt, Christian C.}, title = {Diet analysis of bats killed at wind turbines suggests large-scale losses of trophic interactions}, series = {Conservation science and practice}, volume = {4}, journal = {Conservation science and practice}, number = {7}, publisher = {Wiley}, address = {Hoboken}, issn = {2578-4854}, doi = {10.1111/csp2.12744}, pages = {12}, year = {2022}, abstract = {Agricultural practice has led to landscape simplification and biodiversity decline, yet recently, energy-producing infrastructures, such as wind turbines, have been added to these simplified agroecosystems, turning them into multi-functional energy-agroecosystems. Here, we studied the trophic interactions of bats killed at wind turbines using a DNA metabarcoding approach to shed light on how turbine-related bat fatalities may possibly affect local habitats. Specifically, we identified insect DNA in the stomachs of common noctule bats (Nyctalus noctula) killed by wind turbines in Germany to infer in which habitats these bats hunted. Common noctule bats consumed a wide variety of insects from different habitats, ranging from aquatic to terrestrial ecosystems (e.g., wetlands, farmland, forests, and grasslands). Agricultural and silvicultural pest insects made up about 20\% of insect species consumed by the studied bats. Our study suggests that the potential damage of wind energy production goes beyond the loss of bats and the decline of bat populations. Bat fatalities at wind turbines may lead to the loss of trophic interactions and ecosystem services provided by bats, which may add to the functional simplification and impaired crop production, respectively, in multi-functional ecosystems.}, language = {en} } @article{WeithoffBell2022, author = {Weithoff, Guntram and Bell, Elanor Margaret}, title = {Complex Trophic Interactions in an Acidophilic Microbial Community}, series = {Microorganisms}, volume = {10}, journal = {Microorganisms}, edition = {7}, publisher = {MDPI}, address = {Basel, Schweiz}, issn = {2076-2607}, doi = {10.3390/microorganisms10071340}, pages = {1 -- 10}, year = {2022}, abstract = {Extreme habitats often harbor specific communities that differ substantially from non-extreme habitats. In many cases, these communities are characterized by archaea, bacteria and protists, whereas the number of species of metazoa and higher plants is relatively low. In extremely acidic habitats, mostly prokaryotes and protists thrive, and only very few metazoa thrive, for example, rotifers. Since many studies have investigated the physiology and ecology of individual species, there is still a gap in research on direct, trophic interactions among extremophiles. To fill this gap, we experimentally studied the trophic interactions between a predatory protist (Actinophrys sol, Heliozoa) and its prey, the rotifers Elosa woralli and Cephalodella sp., the ciliate Urosomoida sp. and the mixotrophic protist Chlamydomonas acidophila (a green phytoflagellate, Chlorophyta). We found substantial predation pressure on all animal prey. High densities of Chlamydomonas acidophila reduced the predation impact on the rotifers by interfering with the feeding behaviour of A. sol. These trophic relations represent a natural case of intraguild predation, with Chlamydomonas acidophila being the common prey and the rotifers/ciliate and A. sol being the intraguild prey and predator, respectively. We further studied this intraguild predation along a resource gradient using Cephalodella sp. as the intraguild prey. The interactions among the three species led to an increase in relative rotifer abundance with increasing resource (Chlamydomonas) densities. By applying a series of laboratory experiments, we revealed the complexity of trophic interactions within a natural extremophilic community.}, language = {en} } @article{KefiBerlowWietersetal.2012, author = {Kefi, Sonia and Berlow, Eric L. and Wieters, Evie A. and Navarrete, Sergio A. and Petchey, Owen L. and Wood, Spencer A. and Boit, Alice and Joppa, Lucas N. and Lafferty, Kevin D. and Williams, Richard J. and Martinez, Neo D. and Menge, Bruce A. and Blanchette, Carol A. and Iles, Alison C. and Brose, Ulrich}, title = {More than a meal ... integrating non-feeding interactions into food webs}, series = {Ecology letters}, volume = {15}, journal = {Ecology letters}, number = {4}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/j.1461-0248.2011.01732.x}, pages = {291 -- 300}, year = {2012}, abstract = {Organisms eating each other are only one of many types of well documented and important interactions among species. Other such types include habitat modification, predator interference and facilitation. However, ecological network research has been typically limited to either pure food webs or to networks of only a few (<3) interaction types. The great diversity of non-trophic interactions observed in nature has been poorly addressed by ecologists and largely excluded from network theory. Herein, we propose a conceptual framework that organises this diversity into three main functional classes defined by how they modify specific parameters in a dynamic food web model. This approach provides a path forward for incorporating non-trophic interactions in traditional food web models and offers a new perspective on tackling ecological complexity that should stimulate both theoretical and empirical approaches to understanding the patterns and dynamics of diverse species interactions in nature.}, language = {en} } @article{BoitMartinezWilliamsetal.2012, author = {Boit, Alice and Martinez, Neo D. and Williams, Richard J. and Gaedke, Ursula}, title = {Mechanistic theory and modelling of complex food-web dynamics in Lake Constance}, series = {Ecology letters}, volume = {15}, journal = {Ecology letters}, number = {6}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {1461-023X}, doi = {10.1111/j.1461-0248.2012.01777.x}, pages = {594 -- 602}, year = {2012}, abstract = {Mechanistic understanding of consumer-resource dynamics is critical to predicting the effects of global change on ecosystem structure, function and services. Such understanding is severely limited by mechanistic models inability to reproduce the dynamics of multiple populations interacting in the field. We surpass this limitation here by extending general consumer-resource network theory to the complex dynamics of a specific ecosystem comprised by the seasonal biomass and production patterns in a pelagic food web of a large, well-studied lake. We parameterised our allometric trophic network model of 24 guilds and 107 feeding relationships using the lakes food web structure, initial spring biomasses and body-masses. Adding activity respiration, the detrital loop, minimal abiotic forcing, prey resistance and several empirically observed rates substantially increased the model's fit to the observed seasonal dynamics and the size-abundance distribution. This process illuminates a promising approach towards improving food-web theory and dynamic models of specific habitats.}, language = {en} }