@article{DoebbelingHildebrandtMierschKhannaetal.2024, author = {D{\"o}bbeling-Hildebrandt, Niklas and Miersch, Klaas and Khanna, Tarun M. and Bachelet, Marion and Bruns, Stephan B. and Callaghan, Max and Edenhofer, Ottmar and Flachsland, Christian and Forster, Piers M. and Kalkuhl, Matthias and Koch, Nicolas and Lamb, William F. and Ohlendorf, Nils and Steckel, Jan Christoph and Minx, Jan C.}, title = {Systematic review and meta-analysis of ex-post evaluations on the effectiveness of carbon pricing}, series = {Nature communications}, volume = {15}, journal = {Nature communications}, number = {1}, publisher = {Springer Nature}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-024-48512-w}, pages = {12}, year = {2024}, abstract = {Today, more than 70 carbon pricing schemes have been implemented around the globe, but their contributions to emissions reductions remains a subject of heated debate in science and policy. Here we assess the effectiveness of carbon pricing in reducing emissions using a rigorous, machine-learning assisted systematic review and meta-analysis. Based on 483 effect sizes extracted from 80 causal ex-post evaluations across 21 carbon pricing schemes, we find that introducing a carbon price has yielded immediate and substantial emission reductions for at least 17 of these policies, despite the low level of prices in most instances. Statistically significant emissions reductions range between -5\% to -21\% across the schemes (-4\% to -15\% after correcting for publication bias). Our study highlights critical evidence gaps with regard to dozens of unevaluated carbon pricing schemes and the price elasticity of emissions reductions. More rigorous synthesis of carbon pricing and other climate policies is required across a range of outcomes to advance our understanding of "what works" and accelerate learning on climate solutions in science and policy.}, language = {en} } @article{vanSoestAleluiaReisBaptistaetal.2021, author = {van Soest, Heleen L. and Aleluia Reis, Lara and Baptista, Luiz Bernardo and Bertram, Christoph and Despr{\´e}s, Jacques and Drouet, Laurent and den Elzen, Michel and Fragkos, Panagiotis and Fricko, Oliver and Fujimori, Shinichiro and Grant, Neil and Harmsen, Mathijs and Iyer, Gokul and Keramidas, Kimon and K{\"o}berle, Alexandre C. and Kriegler, Elmar and Malik, Aman and Mittal, Shivika and Oshiro, Ken and Riahi, Keywan and Roelfsema, Mark and van Ruijven, Bas and Schaeffer, Roberto and Silva Herran, Diego and Tavoni, Massimo and {\"U}nl{\"u}, Gamze and Vandyck, Toon and van Vuuren, Detlef P.}, title = {Global roll-out of comprehensive policy measures may aid in bridging emissions gap}, series = {Nature communications}, volume = {12}, journal = {Nature communications}, number = {1}, publisher = {Nature Publishing Group UK}, address = {London}, doi = {10.1038/s41467-021-26595-z}, pages = {10}, year = {2021}, abstract = {Closing the emissions gap between Nationally Determined Contributions (NDCs) and the global emissions levels needed to achieve the Paris Agreement's climate goals will require a comprehensive package of policy measures. National and sectoral policies can help fill the gap, but success stories in one country cannot be automatically replicated in other countries. They need to be adapted to the local context. Here, we develop a new Bridge scenario based on nationally relevant, short-term measures informed by interactions with country experts. These good practice policies are rolled out globally between now and 2030 and combined with carbon pricing thereafter. We implement this scenario with an ensemble of global integrated assessment models. We show that the Bridge scenario closes two-thirds of the emissions gap between NDC and 2 °C scenarios by 2030 and enables a pathway in line with the 2 °C goal when combined with the necessary long-term changes, i.e. more comprehensive pricing measures after 2030. The Bridge scenario leads to a scale-up of renewable energy (reaching 52\%-88\% of global electricity supply by 2050), electrification of end-uses, efficiency improvements in energy demand sectors, and enhanced afforestation and reforestation. Our analysis suggests that early action via good-practice policies is less costly than a delay in global climate cooperation.}, language = {en} } @article{SoergelKrieglerWeindletal.2021, author = {Soergel, Bjoern and Kriegler, Elmar and Weindl, Isabelle and Rauner, Sebastian and Dirnaichner, Alois and Ruhe, Constantin and Hofmann, Matthias and Bauer, Nico and Bertram, Christoph and Bodirsky, Benjamin Leon and Leimbach, Marian and Leininger, Julia and Levesque, Antoine and Luderer, Gunnar and Pehl, Michaja and Wingens, Christopher and Baumstark, Lavinia and Beier, Felicitas and Dietrich, Jan Philipp and Humpen{\"o}der, Florian and von Jeetze, Patrick and Klein, David and Koch, Johannes and Pietzcker, Robert C. and Strefler, Jessica and Lotze-Campen, Hermann and Popp, Alexander}, title = {A sustainable development pathway for climate action within the UN 2030 Agenda}, series = {Nature climate change}, volume = {11}, journal = {Nature climate change}, number = {8}, publisher = {Nature Publishing Group}, address = {London}, issn = {1758-678X}, doi = {10.1038/s41558-021-01098-3}, pages = {656 -- 664}, year = {2021}, abstract = {Ambitious climate policies, as well as economic development, education, technological progress and less resource-intensive lifestyles, are crucial elements for progress towards the UN Sustainable Development Goals (SDGs). However, using an integrated modelling framework covering 56 indicators or proxies across all 17 SDGs, we show that they are insufficient to reach the targets. An additional sustainable development package, including international climate finance, progressive redistribution of carbon pricing revenues, sufficient and healthy nutrition and improved access to modern energy, enables a more comprehensive sustainable development pathway. We quantify climate and SDG outcomes, showing that these interventions substantially boost progress towards many aspects of the UN Agenda 2030 and simultaneously facilitate reaching ambitious climate targets. Nonetheless, several important gaps remain; for example, with respect to the eradication of extreme poverty (180 million people remaining in 2030). These gaps can be closed by 2050 for many SDGs while also respecting the 1.5 °C target and several other planetary boundaries.}, language = {en} }