@article{LucioAmraniDingeletal.2016, author = {Lucio, Levi and Amrani, Moussa and Dingel, Juergen and Lambers, Leen and Salay, Rick and Selim, Gehan M. K. and Syriani, Eugene and Wimmer, Manuel}, title = {Model transformation intents and their properties}, series = {Software and systems modeling}, volume = {15}, journal = {Software and systems modeling}, publisher = {Springer}, address = {Heidelberg}, issn = {1619-1366}, doi = {10.1007/s10270-014-0429-x}, pages = {647 -- 684}, year = {2016}, abstract = {The notion of model transformation intent is proposed to capture the purpose of a transformation. In this paper, a framework for the description of model transformation intents is defined, which includes, for instance, a description of properties a model transformation has to satisfy to qualify as a suitable realization of an intent. Several common model transformation intents are identified, and the framework is used to describe six of them in detail. A case study from the automotive industry is used to demonstrate the usefulness of the proposed framework for identifying crucial properties of model transformations with different intents and to illustrate the wide variety of model transformation intents that an industrial model-driven software development process typically encompasses.}, language = {en} } @article{JoergesMargariaSteffen2011, author = {J{\"o}rges, Sven and Margaria, Tiziana and Steffen, Bernhard}, title = {Assuring property conformance of code generators via model checking}, series = {Formal aspects of computing : the international journal of formal methods}, volume = {23}, journal = {Formal aspects of computing : the international journal of formal methods}, number = {5}, publisher = {Springer}, address = {New York}, issn = {0934-5043}, doi = {10.1007/s00165-010-0169-9}, pages = {589 -- 606}, year = {2011}, abstract = {Automatic code generation is an essential cornerstone of today's model-driven approaches to software engineering. Thus a key requirement for the success of this technique is the reliability and correctness of code generators. This article describes how we employ standard model checking-based verification to check that code generator models developed within our code generation framework Genesys conform to (temporal) properties. Genesys is a graphical framework for the high-level construction of code generators on the basis of an extensible library of well-defined building blocks along the lines of the Extreme Model-Driven Development paradigm. We will illustrate our verification approach by examining complex constraints for code generators, which even span entire model hierarchies. We also show how this leads to a knowledge base of rules for code generators, which we constantly extend by e.g. combining constraints to bigger constraints, or by deriving common patterns from structurally similar constraints. In our experience, the development of code generators with Genesys boils down to re-instantiating patterns or slightly modifying the graphical process model, activities which are strongly supported by verification facilities presented in this article.}, language = {en} }