@article{MelligerLilliestam2021, author = {Melliger, Marc Andr{\´e} and Lilliestam, Johan}, title = {Effects of coordinating support policy changes on renewable power investor choices in Europe}, series = {Energy policy : the international journal of the political, economic, planning, environmental and social aspects of energy}, volume = {148}, journal = {Energy policy : the international journal of the political, economic, planning, environmental and social aspects of energy}, publisher = {Elsevier}, address = {Oxford}, issn = {0301-4215}, doi = {10.1016/j.enpol.2020.111993}, pages = {20}, year = {2021}, abstract = {The economic context for renewable power in Europe is shifting: feed-in tariffs are replaced by auctioned premiums as the main support schemes. As renewables approach competitiveness, political pressure mounts to phase out support, whereas some other actors perceive a need for continued fixed-price support. We investigate how the phase-out of support or the reintroduction of feed-in tariffs would affect investors' choices for renewables through a conjoint analysis. In particular, we analyse the impact of coordination - the simultaneousness - of policy changes across countries and technologies. We find that investment choices are not strongly affected if policy changes are coordinated and returns unaffected. However, if policy changes are uncoordinated, investments shift to still supported - less mature and costlier - technologies or countries where support remains or is reintroduced. This shift is particularly strong for large investors and could potentially skew the European power mix towards an over-reliance on a single, less mature technology or specific generation region, resulting in a more expensive power system. If European countries want to change their renewable power support policies, and especially if they phase out support and expose renewables to market competition, it is important that they coordinate their actions.}, language = {en} } @misc{MaLiKuehnetal.2018, author = {Ma, Jianli and Li, Qi and K{\"u}hn, Michael and Nakaten, Natalie Christine}, title = {Power-to-gas based subsurface energy storage}, series = {Renewable and Sustainable Energy Reviews}, volume = {97}, journal = {Renewable and Sustainable Energy Reviews}, publisher = {Elsevier}, address = {Oxford}, issn = {1364-0321}, doi = {10.1016/j.rser.2018.08.056}, pages = {478 -- 496}, year = {2018}, abstract = {The Renewable energy power generation capacity has been rapidly increasing in China recently. Meanwhile, the contradiction between power supply and demand is becoming increasingly more prominent due to the intermittence of renewable energies. On the other hand, on the mitigation of carbon dioxide (CO2) emissions in China needs immediate attention. Power-to-Gas (PtG), a chemical energy storage technology, can convert surplus electricity into combustible gases. Subsurface energy storage can meet the requirements of long term storage with its large capacity. This paper provides a discussion of the entire PtG energy storage technology process and the current research progress. Based on the comparative study of different geological storage schemes for synthetic methane, their respective research progress and limitations are noted. In addition, a full investigation of the distribution and implementation of global PtG and CO2 capture and storage (CCS) demonstration projects is performed. Subsequently, the opportunities and challenges of the development of this technology in China are discussed based on techno-economic and ecological effects analysis. While PtG is expected to be a revolutionary technology that will replace traditional power systems, the main issues of site selection, energy efficiency and the economy still need to be adequately addressed. Additionally, based on the comprehensive discussion of the results of the analysis, power-to-gas and subsurface energy storage implementation strategies, as well as outlook in China are presented.}, language = {en} }