@article{ApriyantoCompartFettke2023, author = {Apriyanto, Ardha and Compart, Julia and Fettke, J{\"o}rg}, title = {Transcriptomic analysis of mesocarp tissue during fruit development of the oil palm revealed specific isozymes related to starch metabolism that control oil yield}, series = {Frontiers in plant science}, volume = {14}, journal = {Frontiers in plant science}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2023.1220237}, pages = {13}, year = {2023}, abstract = {The oil palm (Elaeis guineensis Jacq.) produces a large amount of oil from the fruit. However, increasing the oil production in this fruit is still challenging. A recent study has shown that starch metabolism is essential for oil synthesis in fruit-producing species. Therefore, the transcriptomic analysis by RNA-seq was performed to observe gene expression alteration related to starch metabolism genes throughout the maturity stages of oil palm fruit with different oil yields. Gene expression profiles were examined with three different oil yields group (low, medium, and high) at six fruit development phases (4, 8, 12, 16, 20, and 22 weeks after pollination). We successfully identified and analyzed differentially expressed genes in oil palm mesocarps during development. The results showed that the transcriptome profile for each developmental phase was unique. Sucrose flux to the mesocarp tissue, rapid starch turnover, and high glycolytic activity have been identified as critical factors for oil production in oil palms. For starch metabolism and the glycolytic pathway, we identified specific gene expressions of enzyme isoforms (isozymes) that correlated with oil production, which may determine the oil content. This study provides valuable information for creating new high-oil-yielding palm varieties via breeding programs or genome editing approaches.}, language = {en} } @article{ApriyantoAjambang2022, author = {Apriyanto, Ardha and Ajambang, Walter}, title = {Transcriptomic dataset for early inflorescence stages of oil palm in response to defoliation stress}, series = {Data in Brief}, volume = {41}, journal = {Data in Brief}, publisher = {Elsevier}, address = {Amsterdam}, issn = {2352-3409}, doi = {10.1016/j.dib.2022.107914}, pages = {6}, year = {2022}, abstract = {Oil palm breeding and seed development have been hindered due to the male parent's incapacity to produce male inflorescence as a source of pollen under normal conditions. On the other hand, a young oil palm plantation has a low pollination rate due to a lack of male flowers. These are the common problem of sex ratio in the oil palm industry. Nevertheless, the regulation of sex ratio in oil palm plants is a complex mechanism and remains an open question until now. Researchers have previously used complete defoliation to induce male inflorescences, but the biological and molecular mechanisms underlying this morphological change have yet to be discovered. Here, we present an RNA-seq dataset from three early stages of an oil palm inflorescence under normal conditions and complete defoliation stress. This transcriptomic dataset is a valuable resource to improve our understanding of sex determination mechanisms in oil palm inflorescence.}, language = {en} } @phdthesis{Paraskevopoulou2019, author = {Paraskevopoulou, Sofia}, title = {Adaptive genetic variation and responses to thermal stress in brachionid rotifers}, pages = {IV, 177}, year = {2019}, abstract = {The importance of cryptic diversity in rotifers is well understood regarding its ecological consequences, but there remains an in depth comprehension of the underlying molecular mechanisms and forces driving speciation. Temperature has been found several times to affect species spatio-temporal distribution and organisms' performance, but we lack information on the mechanisms that provide thermal tolerance to rotifers. High cryptic diversity was found recently in the freshwater rotifer "Brachionus calyciflorus", showing that the complex comprises at least four species: B. calyciflorus sensu stricto (s.s.), B. fernandoi, B. dorcas, and B. elevatus. The temporal succession among species which have been observed in sympatry led to the idea that temperature might play a crucial role in species differentiation. The central aim of this study was to unravel differences in thermal tolerance between species of the former B. calyciflorus species complex by comparing phenotypic and gene expression responses. More specifically, I used the critical maximum temperature as a proxy for inter-species differences in heat-tolerance; this was modeled as a bi-dimensional phenotypic trait taking into consideration the intention and the duration of heat stress. Significant differences on heat-tolerance between species were detected, with B. calyciflorus s.s. being able to tolerate higher temperatures than B. fernandoi. Based on evidence of within species neutral genetic variation, I further examined adaptive genetic variability within two different mtDNA lineages of the heat tolerant B. calyciflorus s.s. to identify SNPs and genes under selection that might reflect their adaptive history. These analyses did not reveal adaptive genetic variation related to heat, however, they show putatively adaptive genetic variation which may reflect local adaptation. Functional enrichment of putatively positively selected genes revealed signals of adaptation in genes related to "lipid metabolism", "xenobiotics biodegradation and metabolism" and "sensory system", comprising candidate genes which can be utilized in studies on local adaptation. An absence of genetically-based differences in thermal adaptation between the two mtDNA lineages, together with our knowledge that B. calyciflorus s.s. can withstand a broad range of temperatures, led to the idea to further investigate shared transcriptomic responses to long-term exposure to high and low temperatures regimes. With this, I identified candidate genes that are involved in the response to temperature imposed stress. Lastly, I used comparative transcriptomics to examine responses to imposed heat-stress in heat-tolerant and heat-sensitive Brachionus species. I found considerably different patterns of gene expression in the two species. Most striking are patterns of expression regarding the heat shock proteins (hsps) between the two species. In the heat-tolerant, B. calyciflorus s.s., significant up-regulation of hsps at low temperatures was indicative of a stress response at the cooler end of the temperature regimes tested here. In contrast, in the heat-sensitive B. fernandoi, hsps generally exhibited up-regulation of these genes along with rising temperatures. Overall, identification of differences in expression of genes suggests suppression of protein biosynthesis to be a mechanism to increase thermal tolerance. Observed patterns in population growth are correlated with the hsp gene expression differences, indicating that this physiological stress response is indeed related to phenotypic life history performance.}, language = {en} }