@article{LiuAdlerLipusetal.2020, author = {Liu, Qi and Adler, Karsten and Lipus, Daniel and K{\"a}mpf, Horst and Bussert, Robert and Plessen, Birgit and Schulz, Hans-Martin and Krauze, Patryk and Horn, Fabian and Wagner, Dirk and Mangelsdorf, Kai and Alawi, Mashal}, title = {Microbial signatures in deep CO2-saturated miocene sediments of the active Hartousov mofette system (NW Czech Republic)}, series = {Frontiers in microbiology}, volume = {11}, journal = {Frontiers in microbiology}, publisher = {Frontiers Media}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2020.543260}, pages = {21}, year = {2020}, abstract = {The Hartousov mofette system is a natural CO2 degassing site in the central Cheb Basin (Eger Rift, Central Europe). In early 2016 a 108 m deep core was obtained from this system to investigate the impact of ascending mantle-derived CO2 on indigenous deep microbial communities and their surrounding life habitat. During drilling, a CO2 blow out occurred at a depth of 78.5 meter below surface (mbs) suggesting a CO2 reservoir associated with a deep low-permeable CO2-saturated saline aquifer at the transition from Early Miocene terrestrial to lacustrine sediments. Past microbial communities were investigated by hopanoids and glycerol dialkyl glycerol tetraethers (GDGTs) reflecting the environmental conditions during the time of deposition rather than showing a signal of the current deep biosphere. The composition and distribution of the deep microbial community potentially stimulated by the upward migration of CO2 starting during Mid Pleistocene time was investigated by intact polar lipids (IPLs), quantitative polymerase chain reaction (qPCR), and deoxyribonucleic acid (DNA) analysis. The deep biosphere is characterized by microorganisms that are linked to the distribution and migration of the ascending CO2-saturated groundwater and the availability of organic matter instead of being linked to single lithological units of the investigated rock profile. Our findings revealed high relative abundances of common soil and water bacteria, in particular the facultative, anaerobic and potential iron-oxidizing Acidovorax and other members of the family Comamonadaceae across the whole recovered core. The results also highlighted the frequent detection of the putative sulfate-oxidizing and CO2-fixating genus Sulfuricurvum at certain depths. A set of new IPLs are suggested to be indicative for microorganisms associated to CO2 accumulation in the mofette system.}, language = {en} } @article{RohrmuellerKaempfGeissetal.2018, author = {Rohrm{\"u}ller, J. and K{\"a}mpf, Horst and Geiss, E. and Grossmann, J. and Grun, I. and Mingram, Jens and Mrlina, J. and Plessen, Birgit and Stebich, M. and Veress, C. and Wendt, A. and Nowaczyk, Nobert}, title = {Reconnaissance study of an inferred Quaternary maar structure in the western part of the Bohemian Massif near Neualbenreuth, NE-Bavaria (Germany)}, series = {International journal of earth sciences}, volume = {107}, journal = {International journal of earth sciences}, number = {4}, publisher = {Springer}, address = {New York}, issn = {1437-3254}, doi = {10.1007/s00531-017-1543-0}, pages = {1381 -- 1405}, year = {2018}, abstract = {After a comprehensive geophysical prospecting the Quaternary MA 1/2 tina Maar, located on a line between the two Quaternary scoria cones Komorni could be revealed by a scientific drilling at the German-Czech border in 2007. Further geophysical field investigations led to the discovery of another geological structure about 2.5 km ESE of the small town Neualbenreuth (NE-Bavaria, Germany), inferred to be also a maar structure, being the fourth volcanic feature aligned along the NW-SE trending Tachov fault zone. It is only faintly indicated as a partial circular rim in the digital elevation model. Though not expressed by a clear magnetic anomaly, geoelectric and refraction seismic tomography strongly indicates a bowl-shaped depression filled with low-resistivity and low-velocity material, correlating well with the well-defined negative gravity anomaly of - 2.5 mGal. Below ca. 15 m-thick debris layer, successions of mostly laminated sediments were recovered in a 100 m-long sediment core in 2015. Sections of finely laminated layers, likely varves, rich in organic matter and tree pollen, were recognized in the upper (22-30 m) and lower (70-86 m) part of the core, respectively, interpreted as interglacials, whereas mostly minerogenic laminated deposits, poor in organic matter, and (almost) barren of tree pollen are interpreted as clastic glacial deposits. According to a preliminary age model based on magnetostratigraphy, palynology, radiocarbon dating, and cyclostratigraphy, the recovered sediments span the time window from about 85 ka back to about 270 ka, covering marine isotope stages 5-8. Sedimentation rates are in the range of 10 cm ka(-1) in interglacials and up to 100 cm ka(-1) in glacial phases. The stratigraphic record resembles the one from MA 1/2 tina Maar, with its eruption date being derived from a nearby tephra deposit at 288 +/- 17 ka, thus supporting the age model of the inferred Neualbenreuth Maar.}, language = {en} } @article{KrauzeKaempfHornetal.2017, author = {Krauze, Patryk and K{\"a}mpf, Horst and Horn, Fabian and Liu, Qi and Voropaev, Andrey and Wagner, Dirk and Alawi, Mashal}, title = {Microbiological and Geochemical Survey of CO2-Dominated Mofette and Mineral Waters of the Cheb Basin, Czech Republic}, series = {Frontiers in microbiology}, volume = {8}, journal = {Frontiers in microbiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-302X}, doi = {10.3389/fmicb.2017.02446}, pages = {16}, year = {2017}, abstract = {The Cheb Basin (NW Bohemia, Czech Republic) is a shallow, neogene intracontinental basin. It is a non-volcanic region which features frequent earthquake swarms and large-scale diffuse degassing of mantle-derived CO2 at the surface that occurs in the form of CO2-rich mineral springs and wet and dry mofettes. So far, the influence of CO2 degassing onto the microbial communities has been studied for soil environments, but not for aquatic systems. We hypothesized, that deep-trenching CO2 conduits interconnect the subsurface with the surface. This admixture of deep thermal fluids should be reflected in geochemical parameters and in the microbial community compositions. In the present study four mineral water springs and two wet mofettes were investigated through an interdisciplinary survey. The waters were acidic and differed in terms of organic carbon and anion/cation concentrations. Element geochemical and isotope analyses of fluid components were used to verify the origin of the fluids. Prokaryotic communities were characterized through quantitative PCR and Illumina 16S rRNA gene sequencing. Putative chemolithotrophic, anaerobic and microaerophilic organisms connected to sulfur (e.g., Sulfuricurvum, Sulfurimonas) and iron (e.g., Gallionella, Sideroxydans) cycling shaped the core community. Additionally, CO2-influenced waters form an ecosystem containing many taxa that are usually found in marine or terrestrial subsurface ecosystems. Multivariate statistics highlighted the influence of environmental parameters such as pH, Fe2+ concentration and conductivity on species distribution. The hydrochemical and microbiological survey introduces a new perspective on mofettes. Our results support that mofettes are either analogs or rather windows into the deep biosphere and furthermore enable access to deeply buried paleo-sediments.}, language = {en} }