@article{HanniganNendelKrull2022, author = {Hannigan, Sara and Nendel, Claas and Krull, Marcos}, title = {Effects of temperature on the movement and feeding behaviour of the large lupine beetle, Sitona gressorius}, series = {Journal of pest science}, journal = {Journal of pest science}, publisher = {Springer}, address = {Heidelberg}, issn = {1612-4758}, doi = {10.1007/s10340-022-01510-7}, pages = {389 -- 402}, year = {2022}, abstract = {Even though the effects of insect pests on global agricultural productivity are well recognised, little is known about movement and dispersal of many species, especially in the context of global warming. This work evaluates how temperature and light conditions affect different movement metrics and the feeding rate of the large lupine beetle, an agricultural pest responsible for widespread damage in leguminous crops. By using video recordings, the movement of 384 beetles was digitally analysed under six different temperatures and light conditions in the laboratory. Bayesian linear mixed-effect models were used to analyse the data. Furthermore, the effects of temperature on the daily diffusion coefficient of beetles were estimated by using hidden Markov models and random walk simulations. Results of this work show that temperature, light conditions, and beetles' weight were the main factors affecting the flight probability, displacement, time being active and the speed of beetles. Significant variations were also observed in all evaluated metrics. On average, beetles exposed to light conditions and higher temperatures had higher mean speed and flight probability. However, beetles tended to stay more active at higher temperatures and less active at intermediate temperatures, around 20 degrees C. Therefore, both the diffusion coefficient and displacement of beetles were lower at intermediate temperatures. These results show that the movement behaviour and feeding rates of beetles can present different relationships in the function of temperature. It also shows that using a single diffusion coefficient for insects in spatially explicit models may lead to over- or underestimation of pest spread.}, language = {en} } @article{FernandezBrunoGarcesetal.2020, author = {Fernandez, Ricardo and Bruno, Giovanni and Garces, Gerardo and Nieto-Luis, H. and Gonzalez-Doncel, Gaspar}, title = {Fractional brownian motion of dislocations during creep deformation of metals}, series = {Materials science \& engineering. A, Structural materials}, volume = {796}, journal = {Materials science \& engineering. A, Structural materials}, publisher = {Elsevier}, address = {Lausanne}, issn = {0921-5093}, doi = {10.1016/j.msea.2020.140013}, pages = {8}, year = {2020}, abstract = {The present work offers an explanation on how the long-range interaction of dislocations influences their movement, and therefore the strain, during creep of metals. It is proposed that collective motion of dislocations can be described as a fractional Brownian motion. This explains the noisy appearance of the creep strain signal as a function of time. Such signal is split into a deterministic and a stochastic part. These terms can be related to two kinds of dislocation motions: individual and collective, respectively. The description is consistent with the fractal nature of strain-induced dislocation structures predicated in previous works. Moreover, it encompasses the evolution of the strain rate during all stages of creep, including the tertiary one. Creep data from Al99.8\% and Al3.85\%Mg tested at different temperatures and stresses are used to validate the proposed ideas: it is found that different creep stages present different diffusion characters, and therefore different dislocation motion character.}, language = {en} } @article{VelkUhligVikulinaetal.2016, author = {Velk, Natalia and Uhlig, Katja and Vikulina, Anna and Duschl, Claus and Volodkin, Dmitry}, title = {Mobility of lysozyme in poly(L-lysine)/hyaluronic acid multilayer films}, series = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, volume = {147}, journal = {Colloids and surfaces : an international journal devoted to fundamental and applied research on colloid and interfacial phenomena in relation to systems of biological origin ; B, Biointerfaces}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0927-7765}, doi = {10.1016/j.colsurfb.2016.07.055}, pages = {343 -- 350}, year = {2016}, abstract = {The spatial and temporal control over presentation of protein-based biomolecules such as growth factors and hormones is crucial for in vitro applications to mimic the complex in vivo environment. We investigated the interaction of a model protein lysozyme (Lys) with poly(L-lysine)/hyaluronic acid (PLL/HA) multilayer films. We focused on Lys diffusion as well as adsorption and retention within the film as a function of the film deposition conditions and post-treatment. Additionally, an effect of Lys concentration on its mobility was probed. A combination of confocal fluorescence microscopy, fluorescence recovery after photobleaching, and microfluidics was employed for this investigation. Our main finding is that adsorption of PLL and HA after protein loading induces acceleration and reduction of Lys mobility, respectively. These results suggest that a charge balance in the film to a high extent governs the protein-film interaction. We believe that control over protein mobility is a key to reach the full potential of the PLL/HA films as reservoirs for biomolecules depending on the application demand. (C) 2016 The Authors. Published by Elsevier B.V.}, language = {en} } @phdthesis{Kneier2019, author = {Kneier, Fabian}, title = {Subsea permafrost in the Laptev Sea}, school = {Universit{\"a}t Potsdam}, pages = {220}, year = {2019}, abstract = {During lower sea levels in glacial periods, deep permafrost formed on large continental shelf areas of the Arctic Ocean. Subsequent sea level rise and coastal erosion created subsea permafrost, which generally degrades after inundation under the influence of a complex suite of marine, near-shore processes. Global warming is especially pronounced in the Arctic, and will increase the transition to and the degradation of subsea permafrost, with implications for atmospheric climate forcing, offshore infrastructure, and aquatic ecosystems. This thesis combines new geophysical, borehole observational and modelling approaches to enhance our understanding of subsea permafrost dynamics. Three specific areas for advancement were identified: (I) sparsity of observational data, (II) lacking implementation of salt infiltration mechanisms in models, and (III) poor understanding of the regional differences in key driving parameters. This study tested the combination of spectral ratios of the ambient vibration seismic wavefield, together with estimated shear wave velocity from seismic interferometry analysis, for estimating the thickness of the unfrozen sediment overlying the ice-bonded permafrost offshore. Mesoscale numerical calculations (10^1 to 10^2 m, thousands of years) were employed to develop and solve the coupled heat diffusion and salt transport equations including phase change effects. Model soil parameters were constrained by borehole data, and the impact of a variety of influences during the transgression was tested in modelling studies. In addition, two inversion schemes (particle swarm optimization and a least-square method) were used to reconstruct temperature histories for the past 200-300 years in the Laptev Sea region in Siberia from two permafrost borehole temperature records. These data were evaluated against larger scale reconstructions from the region. It was found (I) that peaks in spectral ratios modelled for three-layer, one-dimensional systems corresponded with thaw depths. Around Muostakh Island in the central Laptev Sea seismic receivers were deployed on the seabed. Derived depths of the ice-bonded permafrost table were between 3.7-20.7 m ± 15 \%, increasing with distance from the coast. (II) Temperatures modelled during the transition to subsea permafrost resembled isothermal conditions after about 2000 years of inundation at Cape Mamontov Klyk, consistent with observations from offshore boreholes. Stratigraphic scenarios showed that salt distribution and infiltration had a large impact on the ice saturation in the sediments. Three key factors were identified that, when changed, shifted the modelled permafrost thaw depth most strongly: bottom water temperatures, shoreline retreat rate and initial temperature before inundation. Salt transport based on diffusion and contribution from arbitrary density-driven mechanisms only accounted for about 50 \% of observed thaw depths at offshore sites hundreds to thousands of years after inundation. This bias was found consistently at all three sites in the Laptev Sea region. (III) In the temperature reconstructions, distinct differences in the local temperature histories between the western Laptev Sea and the Lena Delta sites were recognized, such as a transition to warmer temperatures a century later in the western Laptev Sea as well as a peak in warming three decades later. The local permafrost surface temperature history at Sardakh Island in the Lena Delta was reminiscent of the circum-Arctic regional average trends. However, Mamontov Klyk in the western Laptev Sea was consistent to Arctic trends only in the most recent decade and was more similar to northern hemispheric mean trends. Both sites were consistent with a rapid synoptic recent warming. In conclusion, the consistency between modelled response, expected permafrost distribution, and observational data suggests that the passive seismic method is promising for the determination of the thickness of unfrozen sediment on the continental Arctic shelf. The quantified gap between currently modelled and observed thaw depths means that the impact of degradation on climate forcing, ecosystems, and infrastructure is larger than current models predict. This discrepancy suggests the importance of further mechanisms of salt penetration and thaw that have not been considered - either pre-inundation or post-inundation, or both. In addition, any meaningful modelling of subsea permafrost would have to constrain the identified key factors and their regional differences well. The shallow permafrost boreholes provide missing well-resolved short-scale temperature information in the coastal permafrost tundra of the Arctic. As local differences from circum-Arctic reconstructions, such as later warming and higher warming magnitude, were shown to exist in this region, these results provide a basis for local surface temperature record parameterization of climate and, in particular, permafrost models. The results of this work bring us one step further to understanding the full picture of the transition from terrestrial to subsea permafrost.}, language = {en} } @phdthesis{Kruesemann2016, author = {Kr{\"u}semann, Henning}, title = {First passage phenomena and single-file motion in ageing continuous time random walks and quenched energy landscapes}, school = {Universit{\"a}t Potsdam}, pages = {122}, year = {2016}, abstract = {In der Physik gibt es viele Prozesse, die auf Grund ihrer Komplexit{\"a}t nicht durch physikalische Gleichungen beschrieben werden k{\"o}nnen, beispielsweise die Bewegung eines Staubkorns in der Luft. Durch die vielen St{\"o}ße mit Luftmolek{\"u}len f{\"u}hrt es eine Zufallsbewegung aus, die so genannte Diffusion. Auch Molek{\"u}le in biologischen Zellen diffundieren, jedoch befinden sich in einer solchen Zelle im selben Volumen viel mehr oder viel gr{\"o}ßere Molek{\"u}le. Das beobachtete Teilchen st{\"o}ßt dementsprechend {\"o}fter mit anderen zusammen und die Diffusion wird langsamer, sie wird subdiffusiv. Mit der Zeit kann sich die Charakteristik der Subdiffusion {\"a}ndern; dies wird als (mikroskopisches) Altern bezeichnet. Ich untersuche in der vorliegenden Arbeit zwei mathematische Modelle f{\"u}r eindimensionale Subdiffusion, einmal den continuous time random walk (CTRW) und einmal die Zufallsbewegung in einer eingefrorenen Energielandschaft (QEL=quenched energy landscape). Beide sind Sprungprozesse, das heißt, sie sind Abfolgen von r{\"a}umlichen Spr{\"u}ngen, die durch zufallsverteilte Wartezeiten getrennt sind. Die Wartezeiten in der QEL sind r{\"a}umlich korrelliert, w{\"a}hrend sie im CTRW unkorrelliert sind. Ich untersuche in der vorliegenden Arbeit verschiedene statistische Gr{\"o}ßen in beiden Modellen. Zun{\"a}chst untersuche ich den Einfluss des Alters und den Einfluss der Korrellationen einer QEL auf die Verteilung der Zeiten, die das diffundierendes Teilchen ben{\"o}tigt, um eine (r{\"a}umliche) Schwelle zu {\"u}berqueren. Ausserdem bestimme ich den Effekt des Alters auf Str{\"o}me von (sub)diffundierenden Partikeln, die sich auf eine absorbierende Barriere zubewegen. Zuletzt besch{\"a}ftige ich mich mit der Diffusion einer eindimensionalen Anordnung von Teilchen in einer QEL, in der diese als harte Kugeln miteinander wechselwirken. Dabei vergleiche ich die gemeinsame Bewegung in einer QEL und als individuelle CTRWs miteinander {\"u}ber die Standartabweichung von der Startposition, f{\"u}r die ich das Mittel {\"u}ber mehrere QELs untersuche. Meine Arbeit setzt sich zusammen aus theoretischen {\"U}berlegungen und Berechnungen sowie der Simulation der Zufallsprozesse. Die Ergebnisse der Simulation und, soweit vorhanden, experimentelle Daten werden mit der Theorie verglichen.}, language = {en} }