@unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 5: Manifolds with isolated singularities}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26659}, year = {2003}, abstract = {Contents: Chapter 5: Manifolds with Isolated Singularities 5.1. Differential Operators and the Geometry of Singularities 5.1.1. How do isolated singularities arise? Examples 5.1.2. Definition and methods for the description of manifolds with isolated singularities 5.1.3. Bundles. The cotangent bundle 5.2. Asymptotics of Solutions, Function Spaces,Conormal Symbols 5.2.1. Conical singularities 5.2.2. Cuspidal singularities 5.3. A Universal Representation of Degenerate Operators and the Finiteness Theorem 5.3.1. The cylindrical representation 5.3.2. Continuity and compactness 5.3.3. Ellipticity and the finiteness theorem 5.4. Calculus of ΨDO 5.4.1. General ΨDO 5.4.2. The subalgebra of stabilizing ΨDO 5.4.3. Ellipticity and the finiteness theorem}, language = {en} } @unpublished{DinesSchulze2003, author = {Dines, Nicoleta and Schulze, Bert-Wolfgang}, title = {Mellin-edge representations of elliptic operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26627}, year = {2003}, abstract = {We construct a class of elliptic operators in the edge algebra on a manifold M with an embedded submanifold Y interpreted as an edge. The ellipticity refers to a principal symbolic structure consisting of the standard interior symbol and an operator-valued edge symbol. Given a differential operator A on M for every (sufficiently large) s we construct an associated operator As in the edge calculus. We show that ellipticity of A in the usual sense entails ellipticity of As as an edge operator (up to a discrete set of reals s). Parametrices P of A then correspond to parametrices Ps of As, interpreted as Mellin-edge representations of P.}, language = {en} } @unpublished{DinesHarutjunjanSchulze2003, author = {Dines, Nicoleta and Harutjunjan, Gohar and Schulze, Bert-Wolfgang}, title = {The Zaremba problem in edge Sobolev spaces}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26615}, year = {2003}, abstract = {Mixed elliptic boundary value problems are characterised by conditions which have a jump along an interface of codimension 1 on the boundary. We study such problems in weighted edge Sobolev spaces and show the Fredholm property and the existence of parametrices under additional conditions of trace and potential type on the interface. Our methods from the calculus of boundary value problems on a manifold with edges will be illustrated by the Zaremba problem and other mixed problems for the Laplace operator.}, language = {en} } @unpublished{Schulze2003, author = {Schulze, Bert-Wolfgang}, title = {Crack theory with singularties at the boundary}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26600}, year = {2003}, abstract = {We investigate crack problems, where the crack boundary has conical singularities. Elliptic operators with two-sided elliptc boundary conditions on the plus and minus sides of the crack will be interpreted as elements of a corner algebra of boundary value problems. The corresponding operators will be completed by extra edge conditions on the crack boundary to Fredholm operators in corner Sobolev spaces with double weights, and there are parametrices within the calculus.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 3: Eta invariant and the spectral flow}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26595}, year = {2003}, abstract = {Contents: Chapter 3: Eta Invariant and the Spectral Flow 3.1. Introduction 3.2. The Classical Spectral Flow 3.2.1. Definition and main properties 3.2.2. The spectral flow formula for periodic families 3.3. The Atiyah-Patodi-Singer Eta Invariant 3.3.1. Definition of the eta invariant 3.3.2. Variation under deformations of the operator 3.3.3. Homotopy invariance. Examples 3.4. The Eta Invariant of Families with Parameter (Melrose's Theory) 3.4.1. A trace on the algebra of parameter-dependent operators 3.4.2. Definition of the Melrose eta invariant 3.4.3. Relationship with the Atiyah-Patodi-Singer eta invariant 3.4.4. Locality of the derivative of the eta invariant. Examples 3.5. The Spectral Flow of Families of Parameter-Dependent Operators 3.5.1. Meromorphic operator functions. Multiplicities of singular points 3.5.2. Definition of the spectral flow 3.6. Higher Spectral Flows 3.6.1. Spectral sections 3.6.2. Spectral flow of homotopies of families of self-adjoint operators 3.6.3. Spectral flow of homotopies of families of parameter-dependent operators 3.7. Bibliographical Remarks}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 4: Pseudodifferential operators}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26587}, year = {2003}, abstract = {Contents: Chapter 4: Pseudodifferential Operators 4.1. Preliminary Remarks 4.1.1. Why are pseudodifferential operators needed? 4.1.2. What is a pseudodifferential operator? 4.1.3. What properties should the pseudodifferential calculus possess? 4.2. Classical Pseudodifferential Operators on Smooth Manifolds 4.2.1. Definition of pseudodifferential operators on a manifold 4.2.2. H{\"o}rmander's definition of pseudodifferential operators 4.2.3. Basic properties of pseudodifferential operators 4.3. Pseudodifferential Operators in Sections of Hilbert Bundles 4.3.1. Hilbert bundles 4.3.2. Operator-valued symbols. Specific features of the infinite-dimensional case 4.3.3. Symbols of compact fiber variation 4.3.4. Definition of pseudodifferential operators 4.3.5. The composition theorem 4.3.6. Ellipticity 4.3.7. The finiteness theorem 4.4. The Index Theorem 4.4.1. The Atiyah-Singer index theorem 4.4.2. The index theorem for pseudodifferential operators in sections of Hilbert bundles 4.4.3. Proof of the index theorem 4.5. Bibliographical Remarks}, language = {en} } @unpublished{DeDonnoSchulze2003, author = {De Donno, G. and Schulze, Bert-Wolfgang}, title = {Meromorphic symbolic structures for boundary value problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26570}, year = {2003}, abstract = {We investigate the ideal of Green and Mellin operators with asymtotics for a manifold with edge-corner singularities and boundary which belongs to the structure of parametrices of elliptic boundary value problems on a configuration with corners whose base manifolds have edges.}, language = {en} } @unpublished{FedosovSchulzeTarkhanov2003, author = {Fedosov, Boris and Schulze, Bert-Wolfgang and Tarkhanov, Nikolai Nikolaevich}, title = {On index theorem for symplectic orbifolds}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26550}, year = {2003}, abstract = {We give an explicit construction of the trace on the algebra of quantum observables on a symplectic orbifold and propose an index formula.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Differential operators on manifolds with singularities : analysis and topology : Chapter 1: Localization (surgery) in elliptic theory}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26546}, year = {2003}, abstract = {Contents: Chapter 1: Localization (Surgery) in Elliptic Theory 1.1. The Index Locality Principle 1.1.1. What is locality? 1.1.2. A pilot example 1.1.3. Collar spaces 1.1.4. Elliptic operators 1.1.5. Surgery and the relative index theorem 1.2. Surgery in Index Theory on Smooth Manifolds 1.2.1. The Booß-Wojciechowski theorem 1.2.2. The Gromov-Lawson theorem 1.3. Surgery for Boundary Value Problems 1.3.1. Notation 1.3.2. General boundary value problems 1.3.3. A model boundary value problem on a cylinder 1.3.4. The Agranovich-Dynin theorem 1.3.5. The Agranovich theorem 1.3.6. Bojarski's theorem and its generalizations 1.4. (Micro)localization in Lefschetz theory 1.4.1. The Lefschetz number 1.4.2. Localization and the contributions of singular points 1.4.3. The semiclassical method and microlocalization 1.4.4. The classical Atiyah-Bott-Lefschetz theorem}, language = {en} } @unpublished{KapanadzeSchulze2003, author = {Kapanadze, David and Schulze, Bert-Wolfgang}, title = {Asymptotics of potentials in the edge calculus}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26530}, year = {2003}, abstract = {Boundary value problems on manifolds with conical singularities or edges contain potential operators as well as trace and Green operators which play a similar role as the corresponding operators in (pseudo-differential) boundary value problems on a smooth manifold. There is then a specific asymptotic behaviour of these operators close to the singularities. We characterise potential operators in terms of actions of cone or edge pseudo-differential operators (in the neighbouring space) on densities supported by sbmanifolds which also have conical or edge singularities. As a byproduct we show the continuity of such potentials as continuous perators between cone or edge Sobolev spaces and subspaces with asymptotics.}, language = {en} } @unpublished{Schulze2003, author = {Schulze, Bert-Wolfgang}, title = {Toeplitz operators, and ellipticity of boundary value problems with global projection conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26510}, year = {2003}, abstract = {Ellipticity of (pseudo-) differential operators A on a compact manifold X with boundary (or with edges) Y is connected with boundary (or edge) conditions of trace and potential type, formulated in terms of global projections on Y together with an additional symbolic structure. This gives rise to operator block matrices A with A in the upper left corner. We study an algebra of such operators, where ellipticity is equivalent to the Fredhom property in suitable scales of spaces: Sobolev spaces on X plus closed subspaces of Sobolev spaces on Y which are the range of corresponding pseudo-differential projections. Moreover, we express parametrices of elliptic elements within our algebra and discuss spectral boundary value problems for differential operators.}, language = {en} } @unpublished{NazaikinskiiSavinSchulzeetal.2003, author = {Nazaikinskii, Vladimir and Savin, Anton and Schulze, Bert-Wolfgang and Sternin, Boris}, title = {Elliptic theory on manifolds with nonisolated singularities : V. Index formulas for elliptic problems on manifolds with edges}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-26500}, year = {2003}, abstract = {For elliptic problems on manifolds with edges, we construct index formulas in form of a sum of homotopy invariant contributions of the strata (the interior of the manifold and the edge). Both terms are the indices of elliptic operators, one of which acts in spaces of sections of finite-dimensional vector bundles on a compact closed manifold and the other in spaces of sections of infinite-dimensional vector bundles over the edge.}, language = {en} }