@article{HuaCookFohlmeisteretal.2017, author = {Hua, Quan and Cook, Duncan and Fohlmeister, Jens Bernd and Penny, Dan and Bishop, Paul and Buckman, Solomon}, title = {Radiocarbon Dating of a Speleothem Record of Paleoclimate for Angkor, Cambodia}, series = {Radiocarbon : an international journal of cosmogenic isotope research}, volume = {59}, journal = {Radiocarbon : an international journal of cosmogenic isotope research}, number = {Special Issue 6 / 2}, publisher = {The University of Arizona, Department of Geosciences}, address = {Tucson, Ariz.}, issn = {0033-8222}, doi = {10.1017/RDC.2017.115}, pages = {1873 -- 1890}, year = {2017}, abstract = {We report the chronological construction for the top portion of a speleothem, PC1, from southern Cambodia with the aim of reconstructing a continuous high-resolution climate record covering the fluorescence and decline of the medieval Khmer kingdom and its capital at Angkor (similar to 9th-15th centuries AD). Earlier attempts to date PC1 by the standard U-Th method proved unsuccessful. We have therefore dated this speleothem using radiocarbon. Fifty carbonate samples along the growth axis of PC1 were collected for accelerator mass spectrometry (AMS) analysis. Chronological reconstruction for PC1 was achieved using two different approaches described by Hua et al. (2012a) and Lechleitner et al. (2016a). Excellent concordance between the two age-depth models indicates that the top similar to 47 mm of PC1 grew during the last millennium with a growth hiatus during similar to 1250-1650 AD, resulting from a large change in measured C-14 values at 34.4-35.2 mm depth. The timing of the growth hiatus covers the period of decades-long droughts during the 14th-16th centuries AD indicated in regional climate records.}, language = {en} } @phdthesis{Morling2017, author = {Morling, Karoline}, title = {Import and decomposition of dissolved organic carbon in pre-dams of drinking water reservoirs}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-399110}, school = {Universit{\"a}t Potsdam}, pages = {xii, 151}, year = {2017}, abstract = {Dissolved organic carbon (DOC) depicts a key component in the aquatic carbon cycle as well as for drinking water production from surface waters. DOC concentrations increased in water bodies of the northern hemisphere in the last decades, posing ecological consequences and water quality problems. Within the pelagic zone of lakes and reservoirs, the DOC pool is greatly affected by biological activity as DOC is simultaneously produced and decomposed. This thesis aimed for a conceptual understanding of organic carbon cycling and DOC quality changes under differing hydrological and trophic conditions. Further, the occurrence of aquatic priming was investigated, which has been proposed as a potential process facilitating the microbial decomposition of stable allochthonous DOC within the pelagic zone. To study organic carbon cycling under different hydrological conditions, quantitative and qualitative investigations were carried out in three pre-dams of drinking water reservoirs exhibiting a gradient in DOC concentrations and trophic states. All pre-dams were mainly autotrophic in their epilimnia. Discharge and temperature were identified as the key factors regulating net production and respiration in the upper water layers of the pre-dams. Considerable high autochthonous production was observed during the summer season under higher trophic status and base flow conditions. Up to 30\% of the total gained organic carbon was produced within the epilimnia. Consequently, this affected the DOC quality within the pre-dams over the year and enhanced characteristics of algae-derived DOC were observed during base flow in summer. Allochthonous derived DOC dominated at high discharges and oligotrophic conditions when production and respiration were low. These results underline that also small impoundments with typically low water residence times are hotspots of carbon cycling, significantly altering water quality in dependence of discharge conditions, temperature and trophic status. Further, it highlights that these factors need to be considered in future water management as increasing temperatures and altered precipitation patterns are predicted in the context of climate change. Under base flow conditions, heterotrophic bacteria preferentially utilized older DOC components with a conventional radiocarbon age of 195-395 years before present (i.e. before 1950). In contrast, younger carbon components (modern, i.e. produced after 1950) were mineralized following a storm flow event. This highlights that age and recalcitrance of DOC are independent from each other. To assess the ages of the microbially consumed DOC, a simplified method was developed to recover the respired CO2 from heterotrophic bacterioplankton for carbon isotope analyses (13C, 14C). The advantages of the method comprise the operation of replicate incubations at in-situ temperatures using standard laboratory equipment and thus enabling an application in a broad range of conditions. Aquatic priming was investigated in laboratory experiments during the microbial decomposition of two terrestrial DOC substrates (peat water and soil leachate). Thereby, natural phytoplankton served as a source of labile organic matter and the total DOC pool increased throughout the experiments due to exudation and cell lysis of the growing phytoplankton. A priming effect for both terrestrial DOC substrates was revealed via carbon isotope analysis and mixing models. Thereby, priming was more pronounced for the peat water than for the soil leachate. This indicates that the DOC source and the amount of the added labile organic matter might influence the magnitude of a priming effect. Additional analysis via high-resolution mass spectrometry revealed that oxidized, unsaturated compounds were more strongly decomposed under priming (i.e. in phytoplankton presence). Given the observed increase in DOC concentrations during the experiments, it can be concluded that aquatic priming is not easily detectable via net concentration changes alone and could be considered as a qualitative effect. The knowledge gained from this thesis contributes to the understanding of aquatic carbon cycling and demonstrated how DOC dynamics in freshwaters vary with hydrological, seasonal and trophic conditions. It further demonstrated that aquatic priming contributes to the microbial transformation of organic carbon and the observed decay of allochthonous DOC during transport in inland waters.}, language = {en} }