@article{GietlerNykielOrzechowskietal.2017, author = {Gietler, Marta and Nykiel, Malgorzata and Orzechowski, Slawomir and Fettke, J{\"o}rg and Zagdanska, Barbara}, title = {Protein carbonylation linked to wheat seedling tolerance to water deficiency}, series = {Environmental and experimental botany}, volume = {137}, journal = {Environmental and experimental botany}, publisher = {Elsevier}, address = {Oxford}, issn = {0098-8472}, doi = {10.1016/j.envexpbot.2017.02.004}, pages = {84 -- 95}, year = {2017}, abstract = {The appearance of the first leaf from the coleoptile in wheat seedlings (Triticum aestivum L.) coincides with the development of seedling susceptibility to water deficiency on the fifth day following imbibition. In dehydrated wheat seedlings, an increase in the protein carbonyl group has been observed. The coincidence of higher protein carbonylation levels with development of dehydration intolerance drew our attention. To gain more insight into the molecular basis of wheat drought tolerance, the seedling profiles of carbonylated proteins were analysed and compared. Two-dimensional gel electrophoresis (2D-PAGE) and mass spectrometry (MALDI-TOF and LC-MS/MS) were used to indicate and identify differential carbonylated proteins. Among the protein spots with at least a two-fold change in protein abundance in dehydrated seedlings in relation to control (well-watered) plants during the tolerant phase of growth, 19 carbonylated proteins increased and 18 carbonylated proteins decreased in abundance. Among 26 differentially expressed carbonylated proteins in sensitive seedlings, the abundance of 10 protein spots increased while that of 16 proteins decreased upon dehydration. We have demonstrated a link between protein carbonylation and seedling sensitivity to dehydration. The analysis of carbonylated protein profiles clearly showed that proteins with a potential role in the maintenance of dehydration tolerance in wheat seedlings are mainly linked to energy production, anti-fungal and/or insecticidal activity, or to the regulation of both protein synthesis and degradation.}, language = {en} }