@article{StarkenburgMartinYouakimetal.2017, author = {Starkenburg, Else and Martin, Nicolas and Youakim, Kris and Aguado, David S. and Allende Prieto, Carlos and Arentsen, Anke and Bernard, Edouard J. and Bonifacio, Piercarlo and Caffau, Elisabetta and Carlberg, Raymond G. and Cote, Patrick and Fouesneau, Morgan and Francois, Patrick and Franke, Oliver and Gonzalez Hernandez, Jonay I. and Gwyn, Stephen D. J. and Hill, Vanessa and Ibata, Rodrigo A. and Jablonka, Pascale and Longeard, Nicolas and McConnachie, Alan W. and Navarro, Julio F. and Sanchez-Janssen, Ruben and Tolstoy, Eline and Venn, Kim A.}, title = {The Pristine survey - I. Mining the Galaxy for the most metal-poor stars}, series = {Monthly notices of the Royal Astronomical Society}, volume = {471}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx1068}, pages = {2587 -- 2604}, year = {2017}, abstract = {We present the Pristine survey, a new narrow-band photometric survey focused on the metallicity-sensitive Ca H\&K lines and conducted in the Northern hemisphere with the wide-field imager MegaCam on the Canada-France-Hawaii Telescope. This paper reviews our overall survey strategy and discusses the data processing and metallicity calibration. Additionally we review the application of these data to the main aims of the survey, which are to gather a large sample of the most metal-poor stars in the Galaxy, to further characterize the faintest Milky Way satellites, and to map the (metal-poor) substructure in the Galactic halo. The current Pristine footprint comprises over 1000 deg(2) in the Galactic halo ranging from b similar to 30 degrees to similar to 78 degrees and covers many known stellar substructures. We demonstrate that, for Sloan Digital Sky Survey (SDSS) stellar objects, we can calibrate the photometry at the 0.02-mag level. The comparison with existing spectroscopic metallicities from SDSS/Sloan Extension for Galactic Understanding and Exploration (SEGUE) and Large Sky Area Multi-Object Fiber Spectroscopic Telescope shows that, when combined with SDSS broad-band g and i photometry, we can use the CaHK photometry to infer photometric metallicities with an accuracy of similar to 0.2 dex from [Fe/H] = -0.5 down to the extremely metal-poor regime ([Fe/H] < -3.0). After the removal of various contaminants, we can efficiently select metal-poor stars and build a very complete sample with high purity. The success rate of uncovering [Fe/H](SEGUE) < -3.0 stars among [Fe/H](Pristine) < -3.0 selected stars is 24 per cent, and 85 per cent of the remaining candidates are still very metal poor ([Fe/H]<-2.0). We further demonstrate that Pristine is well suited to identify the very rare and pristine Galactic stars with [Fe/H] < -4.0, which can teach us valuable lessons about the early Universe.}, language = {en} } @article{RichterNuzaFoxetal.2017, author = {Richter, Philipp and Nuza, S. E. and Fox, Andrew J. and Wakker, Bart P. and Lehner, N. and Ben Bekhti, Nadya and Fechner, Cora and Wendt, Martin and Howk, J. Christopher and Muzahid, S. and Ganguly, R. and Charlton, Jane C.}, title = {An HST/COS legacy survey of high-velocity ultraviolet absorption in the}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {607}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {1432-0746}, doi = {10.1051/0004-6361/201630081}, pages = {90}, year = {2017}, abstract = {Context. The Milky Way is surrounded by large amounts of diffuse gaseous matter that connects the stellar body of our Galaxy with its large-scale Local Group (LG) environment. Aims. To characterize the absorption properties of this circumgalactic medium (CGM) and its relation to the LG we present the so-far largest survey of metal absorption in Galactic high-velocity clouds (HVCs) using archival ultraviolet (UV) spectra of extragalactic background sources. The UV data are obtained with the Cosmic Origins Spectrograph (COS) onboard the Hubble Space Telescope (HST) and are supplemented by 21 cm radio observations of neutral hydrogen. Methods. Along 270 sightlines we measure metal absorption in the lines of Si II, Si III, C II, and C IV and associated H I 21 cm emission in HVCs in the velocity range vertical bar v(LSR)vertical bar = 100-500 km s(-1). With this unprecedented large HVC sample we were able to improve the statistics on HVC covering fractions, ionization conditions, small-scale structure, CGM mass, and inflow rate. For the first time, we determine robustly the angular two point correlation function of the high-velocity absorbers, systematically analyze antipodal sightlines on the celestial sphere, and compare the HVC absorption characteristics with that of damped Lyman alpha absorbers (DLAs) and constrained cosmological simulations of the LG (CLUES project).}, language = {en} }