@misc{RubeyBruneHeineetal.2017, author = {Rubey, Michael and Brune, Sascha and Heine, Christian and Davies, D. Rhodri and Williams, Simon E. and M{\"u}ller, R. Dietmar}, title = {Global patterns in Earth's dynamic topography since the Jurassic}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch Naturwissenschaftliche Reihe}, number = {623}, issn = {1866-8372}, doi = {10.25932/publishup-41824}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-418241}, pages = {899 -- 919}, year = {2017}, abstract = {We evaluate the spatial and temporal evolution of Earth's long-wavelength surface dynamic topography since the Jurassic using a series of high-resolution global mantle convection models. These models are Earth-like in terms of convective vigour, thermal structure, surface heat-flux and the geographic distribution of heterogeneity. The models generate a degree-2-dominated spectrum of dynamic topography with negative amplitudes above subducted slabs (i.e. circum-Pacific regions and southern Eurasia) and positive amplitudes elsewhere (i.e. Africa, north-western Eurasia and the central Pacific). Model predictions are compared with published observations and subsidence patterns from well data, both globally and for the Australian and southern African regions. We find that our models reproduce the long-wavelength component of these observations, although observed smaller-scale variations are not reproduced. We subsequently define "geodynamic rules" for how different surface tectonic settings are affected by mantle processes: (i) locations in the vicinity of a subduction zone show large negative dynamic topography amplitudes; (ii) regions far away from convergent margins feature long-term positive dynamic topography; and (iii) rapid variations in dynamic support occur along the margins of overriding plates (e.g. the western US) and at points located on a plate that rapidly approaches a subduction zone (e.g. India and the Arabia Peninsula). Our models provide a predictive quantitative framework linking mantle convection with plate tectonics and sedimentary basin evolution, thus improving our understanding of how subduction and mantle convection affect the spatio-temporal evolution of basin architecture.}, language = {en} } @article{MaddockChilderstoneFryetal.2017, author = {Maddock, Simon T. and Childerstone, Aaron and Fry, Bryan Grieg and Williams, David J. and Barlow, Axel and Wuester, Wolfgang}, title = {Multi-locus phylogeny and species delimitation of Australo-Papuan blacksnakes (Pseudechis Wagler, 1830: Elapidae: Serpentes)}, series = {Molecular phylogenetics and evolution}, volume = {107}, journal = {Molecular phylogenetics and evolution}, publisher = {Elsevier}, address = {San Diego}, issn = {1055-7903}, doi = {10.1016/j.ympev.2016.09.005}, pages = {48 -- 55}, year = {2017}, abstract = {Genetic analyses of Australasian organisms have resulted in the identification of extensive cryptic diversity across the continent. The venomous elapid snakes are among the best-studied organismal groups in this region, but many knowledge gaps persist: for instance, despite their iconic status, the species-level diversity among Australo-Papuan blacksnakes (Pseudechis) has remained poorly understood due to the existence of a group of cryptic species within the P. australis species complex, collectively termed "pygmy mulga snakes". Using two mitochondrial and three nuclear loci we assess species boundaries within the genus using Bayesian species delimitation methods and reconstruct their phylogenetic history using multispecies coalescent approaches. Our analyses support the recognition of 10 species, including all of the currently described pygmy mulga snakes and one undescribed species from the Northern Territory of Australia. Phylogenetic relationships within the genus are broadly consistent with previous work, with the recognition of three major groups, the viviparous red-bellied black snake P. porphyriacus forming the sister species to two clades consisting of ovoviviparous species.}, language = {en} } @phdthesis{GrimmSeyfarth2017, author = {Grimm-Seyfarth, Annegret}, title = {Effects of climate change on a reptile community in arid Australia}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-412655}, school = {Universit{\"a}t Potsdam}, pages = {IX, 184}, year = {2017}, abstract = {Dies ist eine kumulative Dissertation, die drei Originalstudien umfasst (eine publiziert, eine in Revision, eine eingereicht; Stand Dezember 2017). Sie untersucht, wie Reptilienarten im ariden Australien auf verschiedene klimatische Parameter verschiedener r{\"a}umlicher Skalen reagieren und analysiert dabei zwei m{\"o}gliche zugrunde liegende Hauptmechanismen: Thermoregulatorisches Verhalten und zwischenartliche Wechselwirkungen. In dieser Dissertation wurden umfassende, individuenbasierte Felddaten verschiedener trophischer Ebenen kombiniert mit ausgew{\"a}hlten Feldexperimenten, statistischen Analysen, und Vorhersagemodellen. Die hier erkannten Mechanismen und Prozesse k{\"o}nnen nun genutzt werden, um m{\"o}gliche Ver{\"a}nderungen der ariden Reptiliengesellschaft in der Zukunft vorherzusagen. Dieses Wissen wird dazu beitragen, dass unser Grundverst{\"a}ndnis {\"u}ber die Konsequenzen des globalen Wandels verbessert und Biodiversit{\"a}tsverlust in diesem anf{\"a}lligen {\"O}kosystem verhindert wird.}, language = {en} }