@article{YouBehlLoewenbergetal.2017, author = {You, Zewang and Behl, Marc and L{\"o}wenberg, Candy and Lendlein, Andreas}, title = {pH-sensitivity and conformation change of the n-terminal methacrylated peptide VK20}, series = {MRS advances : a journal of the Materials Research Society (MRS)}, volume = {2}, journal = {MRS advances : a journal of the Materials Research Society (MRS)}, publisher = {Cambridge University Press}, address = {Cambridge}, issn = {2059-8521}, doi = {10.1557/adv.2017.491}, pages = {2571 -- 2579}, year = {2017}, abstract = {N-terminal methacrylation of peptide MAXI, which is capable of conformational changes variation of the pH, results in a peptide, named VK20. Increasing the reactivity of this terminal group enables further coupling reactions or chemical modifications of the peptidc. However, this end group functionalization may influence the ability of confonnational changes of VK20; as well as its properties. In this paper; the influence of pH on the transition between random coil and beta-sheet conformation of VK20; including the transition kinetics, were investigated. At pH values of 9 and higher, the kinetics beta-sheet formation increased tor VK(2 0, compared to MAXI. The self-assembly into beta-sheets recognized by the formation of a physically crosslinked gel was furthermore indicated by a significant increase of G. An increase in pH (from 9 to 9.5) led to a faster gelation of the peptide VK20. Simultaneously, G was increased from 460 +/- 70 Pa (at pH 9) to 1520 +/- 180 Pa (at pH 9.5). At the nanoscale, the gel showed a highly interconnected fibrillar/network structure with uniform fibril widths of approximately 3.4 +/- 0.5 nm (N=30). The recovery of the peptide conformation back to random coil resulted in the dissolution of the gel; whereby the kinetics of the recovery depended on the pH. Conclusively, the ability of MAXI to undergo confommtional changes was not affected by N-terminal methacrylation whereas the kinetics of pH-sensitive beta-sheet formations has been increased.}, language = {en} } @article{BlockiLoewenbergJiangetal.2017, author = {Blocki, Anna and L{\"o}wenberg, Candy and Jiang, Yi and Kratz, Karl and Neffe, Axel T. and Jung, Friedrich and Lendlein, Andreas}, title = {Response of encapsulated cells to a gelatin matrix with varied bulk and microenvironmental elastic properties}, series = {Polymers for advanced technologies}, volume = {28}, journal = {Polymers for advanced technologies}, publisher = {Wiley}, address = {Hoboken}, issn = {1042-7147}, doi = {10.1002/pat.3947}, pages = {1245 -- 1251}, year = {2017}, abstract = {Gelatin-based hydrogels offer various biochemical cues that support encapsulated cells and are therefore suitable as cell delivery vehicles in regenerative medicine. However, besides the biochemical signals, biomechanical cues are crucial to ensure an optimal support of encapsulated cells. Hence, we aimed to correlate the cellular response of encapsulated cells to macroscopic and microscopic elastic properties of glycidylmethacrylate (GMA)-functionalized gelatin-based hydrogels. To ensure that different observations in cellular behavior could be attributed to differences in elastic properties, an identical concentration as well as degree of functionalization of biopolymers was utilized to form covalently crosslinked hydrogels. Elastic properties were merely altered by varying the average gelatin-chain length. Hydrogels exhibited an increased degree of swelling and a decreased bulk elastic modulus G with prolonged autoclaving of the starting solution. This was accompanied by an increase of hydrogel mesh size and thus by a reduction of crosslinking density. Tougher hydrogels retained the largest amount of cells; however, they also interfered with cell viability. Softer gels contained a lower cell density, but supported cell elongation and viability. Observed differences could be partially attributed to differences in bulk properties, as high crosslinking densities interfere with diffusion and cell spreading and thus can impede cell viability. Interestingly, a microscopic elastic modulus in the range of native soft tissue supported cell viability and elongation best while ensuring a good cell entrapment. In conclusion, gelatin-based hydrogels providing a soft tissue-like microenvironment represent adequate cell delivery vehicles for tissue engineering approaches. Copyright (c) 2016 John Wiley \& Sons, Ltd.}, language = {en} }