@misc{PetrukKuzyoOrlandoetal.2019, author = {Petruk, Oleh and Kuzyo, T. and Orlando, S. and Pohl, Martin and Miceli, M. and Bocchino, F. and Beshley, V. and Brose, Robert}, title = {Erratum: Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment. - (Monthly notices of the Royal Astronomical Society. - 479, (2018), pg. 4253 - 4270)}, series = {Monthly notices of the Royal Astronomical Society}, volume = {482}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/sty2861}, pages = {1979 -- 1980}, year = {2019}, abstract = {This is a correction notice for 'Post-adiabatic supernova remnants in an interstellar magnetic field: oblique shocks and non-uniform environment' (DOI: https://doi.org/10.1093/mnras/sty1750), which was published in MNRAS 479, 4253-4270 (2018). The publisher regrets to inform that the colour was missing from the colour scales in Figs 8(a)-(d) and Figs 9(a) and (b). This has now been corrected online. The publisher apologizes for this error.}, language = {en} } @article{BohdanNiemiecPohletal.2019, author = {Bohdan, Artem and Niemiec, Jacek and Pohl, Martin and Matsumoto, Yosuke and Amano, Takanobu and Hoshino, Masahiro}, title = {Kinetic Simulations of Nonrelativistic Perpendicular Shocks of Young Supernova Remnants}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {878}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {1}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/ab1b6d}, pages = {11}, year = {2019}, abstract = {Electron injection at high Mach number nonrelativistic perpendicular shocks is studied here for parameters that are applicable to young SNR shocks. Using high-resolution large-scale two-dimensional fully kinetic particle-in-cell simulations and tracing individual particles, we in detail analyze the shock-surfing acceleration (SSA) of electrons at the leading edge of the shock foot. The central question is to what degree the process can be captured in 2D3V simulations. We find that the energy gain in SSA always arises from the electrostatic field of a Buneman wave. Electron energization is more efficient in the out-of-plane orientation of the large-scale magnetic field because both the phase speed and the amplitude of the waves are higher than for the in-plane scenario. Also, a larger number of electrons is trapped by the waves compared to the in-plane configuration. We conclude that significant modifications of the simulation parameters are needed to reach the same level of SSA efficiency as in simulations with out-of-plane magnetic field or 3D simulations.}, language = {en} }