@article{WiesmeierDalinWehrleetal.2017, author = {Wiesmeier, Isabella K. and Dalin, Daniela and Wehrle, Anja and Granacher, Urs and Muehlbauer, Thomas and Dietterle, J{\"o}rg and Weiller, Cornelius and Gollhofer, Albert and Maurer, Christoph}, title = {Balance training enhances vestibular function and reduces overactive proprioceptive feedback in elderly}, series = {Frontiers in aging neuroscience}, volume = {9}, journal = {Frontiers in aging neuroscience}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1663-4365}, doi = {10.3389/fnagi.2017.00273}, pages = {13}, year = {2017}, abstract = {Objectives: Postural control in elderly people is impaired by degradations of sensory, motor, and higher-level adaptive mechanisms. Here, we characterize the effects of a progressive balance training programon these postural control impairments using a brain network model based on system identification techniques. Methods and Material: We analyzed postural control of 35 healthy elderly subjects and compared findings to data from 35 healthy young volunteers. Eighteen elderly subjects performed a 10 week balance training conducted twice per week. Balance training was carried out in static and dynamic movement states, on support surfaces with different elastic compliances, under different visual conditions and motor tasks. Postural control was characterized by spontaneous sway and postural reactions to pseudorandom anterior-posterior tilts of the support surface. Data were interpreted using a parameter identification procedure based on a brain network model. Conclusion: Balance training reduced overactive proprioceptive feedback and restored vestibular orientation in elderly. Based on the assumption of a linear deterioration of postural control across the life span, the training effect can be extrapolated as a juvenescence of 10 years. This study points to a considerable benefit of a continuous balance training in elderly, even without any sensorimotor deficits.}, language = {en} } @misc{WickLeegerAschmannMonnetal.2017, author = {Wick, Kristin and Leeger-Aschmann, Claudia S. and Monn, Nico D. and Radtke, Thomas and Ott, Laura V. and Rebholz, Cornelia E. and Cruz, Sergio and Gerber, Natalie and Schmutz, Einat A. and Puder, Jardena J. and Munsch, Simone and Kakebeeke, Tanja H. and Jenni, Oskar G. and Granacher, Urs and Kriemler, Susi}, title = {Interventions to Promote Fundamental Movement Skills in Childcare and Kindergarten: A Systematic Review and Meta-Analysis}, series = {Sports medicine}, volume = {47}, journal = {Sports medicine}, publisher = {Springer}, address = {Northcote}, issn = {0112-1642}, doi = {10.1007/s40279-017-0723-1}, pages = {2045 -- 2068}, year = {2017}, abstract = {Background Proficiency in fundamental movement skills (FMS) lays the foundation for being physically active and developing more complex motor skills. Improving these motor skills may provide enhanced opportunities for the development of a variety of perceptual, social, and cognitive skills. Objective The objective of this systematic review and meta-analysis was to assess the effects of FMS interventions on actual FMS, targeting typically developing young children. Method Searches in seven databases (CINAHL, Embase, MEDLINE, PsycINFO, PubMed, Scopus, Web of Science) up to August 2015 were completed. Trials with children (aged 2-6 years) in childcare or kindergarten settings that applied FMS-enhancing intervention programs of at least 4 weeks and meeting the inclusion criteria were included. Standardized data extraction forms were used. Risk of bias was assessed using a standard scoring scheme (Effective Public Health Practice Project-Quality Assessment Tool for Quantitative Studies [EPHPP]). We calculated effects on overall FMS, object control and locomotor subscales (OCS and LMS) by weighted standardized mean differences (SMDbetween) using random-effects models. Certainty in training effects was evaluated using GRADE (Grading of Recommendations Assessment, Development, and Evaluation System). Results Thirty trials (15 randomized controlled trials and 15 controlled trials) involving 6126 preschoolers (aged 3.3-5.5 years) revealed significant differences among groups in favor of the intervention group (INT) with small-to-large effects on overall FMS (SMDbetween 0.46), OCS (SMDbetween 1.36), and LMS (SMDbetween 0.94). Our certainty in the treatment estimates based on GRADE is very low. Conclusions Although there is relevant effectiveness of programs to improve FMS proficiency in healthy young children, they need to be interpreted with care as they are based on low-quality evidence and immediate post-intervention effects without long-term follow-up.}, language = {en} } @misc{WickLeegerAschmannMonnetal.2017, author = {Wick, Kristin and Leeger-Aschmann, Claudia S. and Monn, Nico D. and Radtke, Thomas and Ott, Laura V. and Rebholz, Cornelia E. and Cruz, Sergio and Gerber, Natalie and Schmutz, Einat A. and Puder, Jardena J. and Munsch, Simone and Kakebeeke, Tanja H. and Jenni, Oskar G. and Granacher, Urs and Kriemler, Susi}, title = {Interventions to promote fundamental movement skills in childcare and kindergarten}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {702}, issn = {1866-8364}, doi = {10.25932/publishup-43546}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-435463}, pages = {26}, year = {2017}, abstract = {Background Proficiency in fundamental movement skills (FMS) lays the foundation for being physically active and developing more complex motor skills. Improving these motor skills may provide enhanced opportunities for the development of a variety of perceptual, social, and cognitive skills. Objective The objective of this systematic review and meta-analysis was to assess the effects of FMS interventions on actual FMS, targeting typically developing young children. Method Searches in seven databases (CINAHL, Embase, MEDLINE, PsycINFO, PubMed, Scopus, Web of Science) up to August 2015 were completed. Trials with children (aged 2-6 years) in childcare or kindergarten settings that applied FMS-enhancing intervention programs of at least 4 weeks and meeting the inclusion criteria were included. Standardized data extraction forms were used. Risk of bias was assessed using a standard scoring scheme (Effective Public Health Practice Project-Quality Assessment Tool for Quantitative Studies [EPHPP]). We calculated effects on overall FMS, object control and locomotor subscales (OCS and LMS) by weighted standardized mean differences (SMDbetween) using random-effects models. Certainty in training effects was evaluated using GRADE (Grading of Recommendations Assessment, Development, and Evaluation System). Results Thirty trials (15 randomized controlled trials and 15 controlled trials) involving 6126 preschoolers (aged 3.3-5.5 years) revealed significant differences among groups in favor of the intervention group (INT) with small-to-large effects on overall FMS (SMDbetween 0.46), OCS (SMDbetween 1.36), and LMS (SMDbetween 0.94). Our certainty in the treatment estimates based on GRADE is very low. Conclusions Although there is relevant effectiveness of programs to improve FMS proficiency in healthy young children, they need to be interpreted with care as they are based on low-quality evidence and immediate post-intervention effects without long-term follow-up.}, language = {en} } @misc{StelzelSchauenburgRappetal.2017, author = {Stelzel, Christine and Schauenburg, Gesche and Rapp, Michael Armin and Heinzel, Stephan and Granacher, Urs}, title = {Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-395733}, pages = {15}, year = {2017}, abstract = {Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19-30 and 66-84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks.}, language = {en} } @article{StelzelSchauenburgRappetal.2017, author = {Stelzel, Christine and Schauenburg, Gesche and Rapp, Michael Armin and Heinzel, Stephan and Granacher, Urs}, title = {Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control}, series = {Frontiers in psychology}, volume = {8}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.00613}, year = {2017}, abstract = {Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19-30 and 66-84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input- and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks.}, language = {en} } @article{StelzelSchauenburgRappetal.2017, author = {Stelzel, Christine and Schauenburg, Gesche and Rapp, Michael Armin and Heinzel, Stephan and Granacher, Urs}, title = {Age-Related Interference between the Selection of Input-Output Modality Mappings and Postural Control-a Pilot Study}, series = {Frontiers in psychology}, volume = {8}, journal = {Frontiers in psychology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-1078}, doi = {10.3389/fpsyg.2017.00613}, pages = {15}, year = {2017}, abstract = {Age-related decline in executive functions and postural control due to degenerative processes in the central nervous system have been related to increased fall-risk in old age. Many studies have shown cognitive-postural dual-task interference in old adults, but research on the role of specific executive functions in this context has just begun. In this study, we addressed the question whether postural control is impaired depending on the coordination of concurrent response-selection processes related to the compatibility of input and output modality mappings as compared to impairments related to working-memory load in the comparison of cognitive dual and single tasks. Specifically, we measured total center of pressure (CoP) displacements in healthy female participants aged 19-30 and 66-84 years while they performed different versions of a spatial one-back working memory task during semi-tandem stance on an unstable surface (i.e., balance pad) while standing on a force plate. The specific working-memory tasks comprised: (i) modality compatible single tasks (i.e., visual-manual or auditory-vocal tasks), (ii) modality compatible dual tasks (i.e., visual-manual and auditory-vocal tasks), (iii) modality incompatible single tasks (i.e., visual-vocal or auditory-manual tasks), and (iv) modality incompatible dual tasks (i.e., visual-vocal and auditory-manual tasks). In addition, participants performed the same tasks while sitting. As expected from previous research, old adults showed generally impaired performance under high working-memory load (i.e., dual vs. single one-back task). In addition, modality compatibility affected one-back performance in dual-task but not in single-task conditions with strikingly pronounced impairments in old adults. Notably, the modality incompatible dual task also resulted in a selective increase in total CoP displacements compared to the modality compatible dual task in the old but not in the young participants. These results suggest that in addition to effects of working-memory load, processes related to simultaneously overcoming special linkages between input-and output modalities interfere with postural control in old but not in young female adults. Our preliminary data provide further evidence for the involvement of cognitive control processes in postural tasks.}, language = {en} } @article{PrieskeDempsLesinskietal.2017, author = {Prieske, Olaf and Demps, Marie and Lesinski, Melanie and Granacher, Urs}, title = {Combined Effects of Fatigue and Surface Instability on Jump Biomechanics in Elite Athletes}, series = {International journal of sports medicine}, volume = {38}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0043-111894}, pages = {781 -- 790}, year = {2017}, abstract = {The present study aimed to examine the effects of fatigue and surface instability on kinetic and kinematic jump performance measures. Ten female and 10 male elite volleyball players (18 +/- 2 years) performed repetitive vertical double-leg box jumps until failure. Pre and post fatigue, jump height/performance index, ground reaction force and knee flexion/valgus angles were assessed during drop and countermovement jumps on stable and unstable surfaces. Fatigue, surface condition, and sex resulted in significantly lower drop jump performance and ground reaction force (p0.031, 1.1d3.5). Additionally, drop jump knee flexion angles were significantly lower following fatigue (p=0.006, d=1.5). A significant fatiguexsurfacexsex interaction (p=0.020, d=1.2) revealed fatigue-related decrements in drop jump peak knee flexion angles under unstable conditions and in men only. Knee valgus angles were higher on unstable compared to stable surfaces during drop jumps and in females compared to males during drop and countermovement jumps (p0.054, 1.0d1.1). Significant surfacexsex interactions during countermovement jumps (p=0.002, d=1.9) indicated that knee valgus angles at onset of ground contact were significantly lower on unstable compared to stable surfaces in males but higher in females. Our findings revealed that fatigue and surface instability resulted in sex-specific knee motion strategies during jumping in elite volleyball players.}, language = {en} } @article{PrieskeAboodardaSierraetal.2017, author = {Prieske, Olaf and Aboodarda, Saied J. and Sierra, Jose A. Benitez and Behm, David G. and Granacher, Urs}, title = {Slower but not faster unilateral fatiguing knee extensions alter contralateral limb performance without impairment of maximal torque output}, series = {European journal of applied physiology}, volume = {117}, journal = {European journal of applied physiology}, publisher = {Springer}, address = {New York}, issn = {1439-6319}, doi = {10.1007/s00421-016-3524-6}, pages = {323 -- 334}, year = {2017}, abstract = {The purpose of the present study was to examine the effects of unilateral fatigue of the knee extensors at different movement velocities on neuromuscular performance in the fatigued and non-fatigued leg. Unilateral fatigue of the knee extensors was induced in 11 healthy young men (23.7 +/- 3.8 years) at slower (60A degrees/s; FAT60) and faster movement velocities (240A degrees/s; FAT240) using an isokinetic dynamometer. A resting control (CON) condition was included. The fatigue protocols consisted of five sets of 15 maximal concentric knee extensions using the dominant leg. Before and after fatigue, peak isokinetic torque (PIT) and time to PIT (TTP) of the knee extensors as well as electromyographic (EMG) activity of vastus medialis, vastus lateralis, and biceps femoris muscles were assessed at 60 and 240A degrees/s movement velocities in the fatigued and non-fatigued leg. In the fatigued leg, significantly greater PIT decrements were observed following FAT60 and FAT240 (11-19\%) compared to CON (3-4\%, p = .002, d = 2.3). Further, EMG activity increased in vastus lateralis and biceps femoris muscle following FAT240 only (8-28\%, 0.018 <= p <=.024, d = 1.8). In the non-fatigued leg, shorter TTP values were found after the FAT60 protocol (11-15\%, p = .023, d = 2.4). No significant changes were found for EMG data in the non-fatigued leg. The present study revealed that both slower and faster velocity fatiguing contractions failed to show any evidence of cross-over fatigue on PIT. However, unilateral knee extensor fatigue protocols conducted at slower movement velocities (i.e., 60A degrees/s) appear to modulate torque production on the non-fatigued side (evident in shorter TTP values).}, language = {en} } @article{NegraChaabeneSammoudetal.2017, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Bouguezzi, Raja and Mkaouer, Bessem and Hachana, Younes and Granacher, Urs}, title = {EFFECTS OF PLYOMETRIC TRAINING ON COMPONENTS OF PHYSICAL FITNESS IN PREPUBERAL MALE SOCCER ATHLETES: THE ROLE OF SURFACE INSTABILITY}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {31}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, pages = {3295 -- 3304}, year = {2017}, abstract = {Previous studies contrasted the effects of plyometric training (PT) conducted on stable vs. unstable surfaces on components of physical fitness in child and adolescent soccer players. Depending on the training modality (stable vs. unstable), specific performance improvements were found for jump (stable PT) and balance performances (unstable PT). In an attempt to combine the effects of both training modalities, this study examined the effects of PT on stable surfaces compared with combined PT on stable and unstable surfaces on components of physical fitness in prepuberal male soccer athletes. Thirty-three boys were randomly assigned to either a PT on stable surfaces (PTS; n = 17; age = 12.1 +/- 0.5 years; height = 151.6 +/- 5.7 cm; body mass = 39.2 +/- 6.5 kg; and maturity offset = 22.3 +/- 0.5 years) or a combined PT on stable and unstable surfaces (PTC; n = 16; age = 12.2 +/- 0.6 years; height = 154.6 +/- 8.1 cm; body mass = 38.7 +/- 5.0 kg; and maturity offset = 22.2 +/- 0.6 years). Both intervention groups conducted 4 soccer-specific training sessions per week combined with either 2 PTS or PTC sessions. Before and after 8 weeks of training, proxies of muscle power (e.g., countermovement jump [CMJ], standing long jump [SLJ]), muscle strength (e.g., reactive strength index [RSI]), speed (e.g., 20-m sprint test), agility (e.g., modified Illinois change of direction test [MICODT]), static balance (e.g., stable stork bal-ance test [SSBT]), and dynamic balance (unstable stork balance test [USBT]) were tested. An analysis of covariance model was used to test between-group differences (PTS vs. PTC) at posttest using baseline outcomes as covariates. No significant between-group differences at posttest were observed for CMJ (p > 0.05, d = 0.41), SLJ (p > 0.05, d = 0.36), RSI (p > 0.05, d = 0.57), 20-m sprint test (p > 0.05, d = 0.06), MICODT (p > 0.05, d = 0.23), and SSBT (p > 0.05, d = 0.20). However, statistically significant between-group differences at posttest were noted for the USBT (p < 0.01, d = 1.49) in favor of the PTC group. For most physical fitness tests (except RSI), significant pre-to-post improvements were observed for both groups (p < 0.01, d = 0.55-3.96). Eight weeks of PTS or PTC resulted in similar performance improvements in components of physical fitness except for dynamic balance. From a performance-enhancing perspective, PTC is recommended for pediatric strength and conditioning coaches because it produced comparable training effects as PTS on proxies of muscle power, muscle strength, speed, agility, static balance, and additional effects on dynamic balance.}, language = {en} } @article{NegraChaabeneSammoudetal.2017, author = {Negra, Yassine and Chaabene, Helmi and Sammoud, Senda and Bouguezzi, Raja and Abbes, Mohamed Aymen and Hachana, Younes and Granacher, Urs}, title = {Effects of Plyometric Training on Physical Fitness in Prepuberal Soccer Athletes}, series = {International journal of sports medicine}, volume = {38}, journal = {International journal of sports medicine}, publisher = {Thieme}, address = {Stuttgart}, issn = {0172-4622}, doi = {10.1055/s-0042-122337}, pages = {370 -- 377}, year = {2017}, abstract = {This study aimed at examining the effects of plyometric training on stable (SPT) vs. unstable (UPT) surfaces on physical fitness in prepuberal soccer players. Male athletes were randomly assigned to SPT (n = 18; age = 12.7 +/- 0.2 years) or UPT (n = 16; age = 12.2 +/- 0.5 years). Both groups conducted 3 regular soccer training sessions per week combined with either 2 SPT or UPT sessions. Assessment of jumping ability (countermovement jump [CMJ], and standing long jump [SLJ]), speed (10-m, 20-m, 30-m sprint), agility (Illinois agility test [IAT]), and balance (stable [SSBT], unstable [USBT] stork balance test; stable [SYBT], unstable [UYBT] Y balance test) was conducted pre-and post-training. An ANCO-VA model was used to test for between-group differences (SPT vs. UPT) at post-test using baseline values as covariates. No significant differences were found for CMJ height (p > 0.05, d = 0.54), SLJ (p > 0.05; d = 0.81), 10-m, 20-m, and 30-m sprint performances (p > 0.05, d = 0.00-0.24), IAT (p > 0.05, d = 0.48), and dynamic balance (SYBT and UYBT, both p > 0.05, d = 0.39, 0.08, respectively). Statistically significant between-group differences were detected for the USBT (p < 0.01, d = 1.86) and the SSBT (p < 0.01, d = 1.75) in favor of UPT. Following 8 weeks of SPT or UPT in prepuberal athletes, similar performance levels were observed in both groups for measures of jumping ability, speed, dynamic balance, and agility. However, if the goal is to additionally enhance static balance, UPT has an advantage over SPT.}, language = {en} }