@article{ScherlerMunackMeyetal.2014, author = {Scherler, Dirk and Munack, Henry and Mey, J{\"u}rgen and Eugster, Patricia and Wittmann, Hella and Codilean, Alexandru T. and Kubik, Peter and Strecker, Manfred}, title = {Ice dams, outburst floods, and glacial incision at the western margin of the Tibetan Plateau: A > 100 k.y. chronology from the Shyok Valley, Karakoram}, series = {Geological Society of America bulletin}, volume = {126}, journal = {Geological Society of America bulletin}, number = {5-6}, publisher = {American Institute of Physics}, address = {Boulder}, issn = {0016-7606}, doi = {10.1130/B30942.1}, pages = {738 -- 758}, year = {2014}, abstract = {Some of the largest and most erosive floods on Earth result from the failure of glacial dams. While potentially cataclysmic ice dams are recognized to have repeatedly formed along ice-sheet margins, much less is known about the frequency and longevity of ice dams caused by mountain glaciers, and their impact on landscape evolution. Here we present field observations and results from cosmogenic nuclide dating that allow reconstructing a > 100-k.y.-long history of glacial damming in the Shyok Valley, eastern Karakoram (South Asia). Our field observations provide evidence that Asia's second-longest glacier, the Siachen, once extended for over 180 km and blocked the Shyok River during the penultimate glacial period, leading to upstream deposition of a more than 400-m-thick fluvio-lacustrine valley fill. Be-10-depth profile modeling indicates that glacial damming ended with the onset of the Eemian interglacial and that the Shyok River subsequently incised the valley fill at an average rate of similar to 4-7 m k.y.(-1). Comparison with contemporary ice-dammed lakes in the Karakoram and elsewhere suggests recurring outburst floods during the aggradation period, while over 25 cycles of fining-upward lake deposits within the valley fill indicate impounding of floods from farther upstream. Despite prolonged damming, the net effect of this and probably earlier damming episodes by the Siachen Glacier is dominated by glacial erosion in excess of fluvial incision, as evidenced by a pronounced overdeepening that follows the glaciated valley reach. Strikingly similar overdeepened valleys at all major confluences of the Shyok and Indus Rivers with Karakoram tributaries indicate that glacial dams and subsequent outburst floods have been widespread and frequent in this region during the Quaternary. Our study suggests that the interaction of Karakoram glaciers with the Shyok and Indus Rivers promoted valley incision and headward erosion into the western margin of the Tibetan Plateau.}, language = {en} } @article{WangScherlerJingLiuZengetal.2014, author = {Wang, Ping and Scherler, Dirk and Jing Liu-Zeng, and Mey, J{\"u}rgen and Avouac, Jean-Philippe and Zhang, Yunda and Shi, Dingguo}, title = {Tectonic control of Yarlung Tsangpo Gorge revealed by a buried canyon in Southern Tibet}, series = {Science}, volume = {346}, journal = {Science}, number = {6212}, publisher = {American Assoc. for the Advancement of Science}, address = {Washington}, issn = {0036-8075}, doi = {10.1126/science.1259041}, pages = {978 -- 981}, year = {2014}, abstract = {The Himalayan mountains are dissected by some of the deepest and most impressive gorges on Earth. Constraining the interplay between river incision and rock uplift is important for understanding tectonic deformation in this region. We report here the discovery of a deeply incised canyon of the Yarlung Tsangpo River, at the eastern end of the Himalaya, which is now buried under more than 500 meters of sediments. By reconstructing the former valley bottom and dating sediments at the base of the valley fill, we show that steepening of the Tsangpo Gorge started at about 2 million to 2.5 million years ago as a consequence of an increase in rock uplift rates. The high erosion rates within the gorge are therefore a direct consequence of rapid rock uplift.}, language = {en} }