@misc{vonWebskyReichetzederHocher2014, author = {von Websky, Karoline and Reichetzeder, Christoph and Hocher, Berthold}, title = {Physiology and pathophysiology of incretins in the kidney}, series = {Current opinion in nephrology and hypertension : reviews of all advances, evaluations of key references, comprehensive listing of papers}, volume = {23}, journal = {Current opinion in nephrology and hypertension : reviews of all advances, evaluations of key references, comprehensive listing of papers}, number = {1}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1062-4821}, doi = {10.1097/01.mnh.0000437542.77175.a0}, pages = {54 -- 60}, year = {2014}, abstract = {Purpose of reviewIncretin-based therapy with glucagon-like peptide-1 receptor (GLP-1R) agonists and dipeptidyl peptidase-4 (DPP-4) inhibitors is considered a promising therapeutic option for type 2 diabetes mellitus. Cumulative evidence, mainly from preclinical animal studies, reveals that incretin-based therapies also may elicit beneficial effects on kidney function. This review gives an overview of the physiology, pathophysiology, and pharmacology of the renal incretin system.Recent findingsActivation of GLP-1R in the kidney leads to diuretic and natriuretic effects, possibly through direct actions on renal tubular cells and sodium transporters. Moreover, there is evidence that incretin-based therapy reduces albuminuria, glomerulosclerosis, oxidative stress, and fibrosis in the kidney, partially through GLP-1R-independent pathways. Molecular mechanisms by which incretins exert their renal effects are understood incompletely, thus further studies are needed.SummaryThe GLP-1R and DPP-4 are expressed in the kidney in various species. The kidney plays an important role in the excretion of incretin metabolites and most GLP-1R agonists and DPP-4 inhibitors, thus special attention is required when applying incretin-based therapy in renal impairment. Preclinical observations suggest direct renoprotective effects of incretin-based therapies in the setting of hypertension and other disorders of sodium retention, as well as in diabetic and nondiabetic nephropathy. Clinical studies are needed in order to confirm translational relevance from preclinical findings for treatment options of renal diseases.}, language = {en} } @misc{ReichetzederTsuprykovHocher2014, author = {Reichetzeder, Christoph and Tsuprykov, Oleg and Hocher, Berthold}, title = {Endothelin receptor antagonists in clinical research - Lessons learned from preclinical and clinical kidney studies}, series = {Life sciences : molecular, cellular and functional basis of therapy}, volume = {118}, journal = {Life sciences : molecular, cellular and functional basis of therapy}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0024-3205}, doi = {10.1016/j.lfs.2014.02.025}, pages = {141 -- 148}, year = {2014}, abstract = {Endothelin receptor antagonists (ETRAs) are approved for the treatment of pulmonary hypertension and scleroderma-related digital ulcers. The efforts to approve this class of drugs for renal indications, however, failed so far. Preclinical studies were promising. Transgenic overexpression of ET-1 or ET-2 in rodents causes chronic renal failure. Blocking the ET system was effective in the treatment of renal failure in rodent models. However, various animal studies indicate that blocking the renal tubular ETAR and ETBR causes water and salt retention partially mediated via the epithelial sodium transporter in tubular cells. ETRAs were successfully tested clinically in renal indications in phase 2 trials for the treatment of diabetic nephropathy. They showed efficacy in terms of reducing albumin excretion on top of guideline based background therapy (RAS blockade). However, these promising results could not be translated to successful phase Ill trials so far. The spectrum of serious adverse events was similar to other phase III trials using ETRAs. Potential underlying reasons for these failures and options to solve these issues are discussed. In addition preclinical and clinical studies suggest caution when addressing renal patient populations such as patients with hepatorenal syndrome, patients with any type of cystic kidney disease and patients at risk of contrast media induced nephropathy. The lessons learned in renal indications are also important for other potential promising indications of ETRAs like cancer and heart failure. (C) 2014 The Authors. Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/3.0/).}, language = {en} }