@article{WolfHolzmeierWagneretal.2017, author = {Wolf, Thomas J. A. and Holzmeier, Fabian and Wagner, Isabella and Berrah, Nora and Bostedt, Christoph and Bozek, John and Bucksbaum, Philip H. and Coffee, Ryan and Cryan, James and Farrell, Joe and Feifel, Raimund and Martinez, Todd J. and McFarland, Brian and Mucke, Melanie and Nandi, Saikat and Tarantelli, Francesco and Fischer, Ingo and G{\"u}hr, Markus}, title = {Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra}, series = {Applied Sciences}, volume = {7}, journal = {Applied Sciences}, number = {7}, publisher = {MDPI}, address = {Basel}, issn = {2076-3417}, doi = {10.3390/app7070681}, year = {2017}, abstract = {Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.}, language = {en} } @misc{WolfHolzmeierWagneretal.2017, author = {Wolf, Thomas J. A. and Holzmeier, Fabian and Wagner, Isabella and Berrah, Nora and Bostedt, Christoph and Bozek, John and Bucksbaum, Philip H. and Coffee, Ryan and Cryan, James and Farrell, Joe and Feifel, Raimund and Martinez, Todd J. and McFarland, Brian and Mucke, Melanie and Nandi, Saikat and Tarantelli, Francesco and Fischer, Ingo and G{\"u}hr, Markus}, title = {Observing Femtosecond Fragmentation Using Ultrafast X-ray-Induced Auger Spectra}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-402692}, pages = {11}, year = {2017}, abstract = {Molecules often fragment after photoionization in the gas phase. Usually, this process can only be investigated spectroscopically as long as there exists electron correlation between the photofragments. Important parameters, like their kinetic energy after separation, cannot be investigated. We are reporting on a femtosecond time-resolved Auger electron spectroscopy study concerning the photofragmentation dynamics of thymine. We observe the appearance of clearly distinguishable signatures from thymine′s neutral photofragment isocyanic acid. Furthermore, we observe a time-dependent shift of its spectrum, which we can attribute to the influence of the charged fragment on the Auger electron. This allows us to map our time-dependent dataset onto the fragmentation coordinate. The time dependence of the shift supports efficient transformation of the excess energy gained from photoionization into kinetic energy of the fragments. Our method is broadly applicable to the investigation of photofragmentation processes.}, language = {en} } @article{WolfMyhreCryanetal.2017, author = {Wolf, T. J. A. and Myhre, R. H. and Cryan, J. P. and Coriani, S. and Squibb, R. J. and Battistoni, A. and Berrah, Nora and Bostedt, Christoph and Bucksbaum, Philip H. and Coslovich, G. and Feifel, R. and Gaffney, K. J. and Grilj, J. and Martinez, T. J. and Miyabe, S. and Moeller, S. P. and Mucke, M. and Natan, A. and Obaid, R. and Osipov, T. and Plekan, O. and Wang, S. and Koch, H. and Guehr, Markus}, title = {Probing ultrafast pi pi*/n pi* internal conversion in organic chromophores via K-edge resonant absorption}, series = {Nature Communications}, volume = {8}, journal = {Nature Communications}, publisher = {Nature Publ. Group}, address = {London}, issn = {2041-1723}, doi = {10.1038/s41467-017-00069-7}, pages = {14317 -- 14322}, year = {2017}, language = {en} } @article{YoungUedaGuehretal.2018, author = {Young, Linda and Ueda, Kiyoshi and G{\"u}hr, Markus and Bucksbaum, Philip H. and Simon, Marc and Mukamel, Shaul and Rohringer, Nina and Prince, Kevin C. and Masciovecchio, Claudio and Meyer, Michael and Rudenko, Artem and Rolles, Daniel and Bostedt, Christoph and Fuchs, Matthias and Reis, David A. and Santra, Robin and Kapteyn, Henry and Murnane, Margaret and Ibrahim, Heide and Legare, Francois and Vrakking, Marc and Isinger, Marcus and Kroon, David and Gisselbrecht, Mathieu and W{\"o}rner, Hans Jakob and Leone, Stephen R.}, title = {Roadmap of ultrafast x-ray atomic and molecular physics}, series = {Journal of physics : B, Atomic, molecular and optical physics}, volume = {51}, journal = {Journal of physics : B, Atomic, molecular and optical physics}, number = {3}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0953-4075}, doi = {10.1088/1361-6455/aa9735}, pages = {45}, year = {2018}, abstract = {X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (10(20) W cm(-2)) of x-rays at wavelengths down to similar to 1 Angstrom, and HHG provides unprecedented time resolution (similar to 50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of similar to 280 eV (44 Angstroms) and the bond length in methane of similar to 1 Angstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and Angstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at Angstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.}, language = {en} } @misc{YoungUedaGuehretal.2018, author = {Young, Linda and Ueda, Kiyoshi and G{\"u}hr, Markus and Bucksbaum, Philip H. and Simon, Marc and Mukamel, Shaul and Rohringer, Nina and Prince, Kevin C. and Masciovecchio, Claudio and Meyer, Michael and Rudenko, Artem and Rolles, Daniel and Bostedt, Christoph and Fuchs, Matthias and Reis, David A. and Santra, Robin and Kapteyn, Henry and Murnane, Margaret and Ibrahim, Heide and L{\´e}gar{\´e}, Fran{\c{c}}ois and Vrakking, Marc and Isinger, Marcus and Kroon, David and Gisselbrecht, Mathieu and L'Huillier, Anne and W{\"o}rner, Hans Jakob and Leone, Stephen R.}, title = {Roadmap of ultrafast x-ray atomic and molecular physics}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {668}, issn = {1866-8372}, doi = {10.25932/publishup-42423}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-424238}, pages = {46}, year = {2018}, abstract = {X-ray free-electron lasers (XFELs) and table-top sources of x-rays based upon high harmonic generation (HHG) have revolutionized the field of ultrafast x-ray atomic and molecular physics, largely due to an explosive growth in capabilities in the past decade. XFELs now provide unprecedented intensity (1020 W cm-2) of x-rays at wavelengths down to ~1 {\AA}ngstrom, and HHG provides unprecedented time resolution (~50 attoseconds) and a correspondingly large coherent bandwidth at longer wavelengths. For context, timescales can be referenced to the Bohr orbital period in hydrogen atom of 150 attoseconds and the hydrogen-molecule vibrational period of 8 femtoseconds; wavelength scales can be referenced to the chemically significant carbon K-edge at a photon energy of ~280 eV (44 {\AA}ngstroms) and the bond length in methane of ~1 {\AA}ngstrom. With these modern x-ray sources one now has the ability to focus on individual atoms, even when embedded in a complex molecule, and view electronic and nuclear motion on their intrinsic scales (attoseconds and {\AA}ngstroms). These sources have enabled coherent diffractive imaging, where one can image non-crystalline objects in three dimensions on ultrafast timescales, potentially with atomic resolution. The unprecedented intensity available with XFELs has opened new fields of multiphoton and nonlinear x-ray physics where behavior of matter under extreme conditions can be explored. The unprecedented time resolution and pulse synchronization provided by HHG sources has kindled fundamental investigations of time delays in photoionization, charge migration in molecules, and dynamics near conical intersections that are foundational to AMO physics and chemistry. This roadmap coincides with the year when three new XFEL facilities, operating at {\AA}ngstrom wavelengths, opened for users (European XFEL, Swiss-FEL and PAL-FEL in Korea) almost doubling the present worldwide number of XFELs, and documents the remarkable progress in HHG capabilities since its discovery roughly 30 years ago, showcasing experiments in AMO physics and other applications. Here we capture the perspectives of 17 leading groups and organize the contributions into four categories: ultrafast molecular dynamics, multidimensional x-ray spectroscopies; high-intensity x-ray phenomena; attosecond x-ray science.}, language = {en} }