@article{SchneiderFritzschePuciulMalinowskaetal.2020, author = {Schneider, Matthias and Fritzsche, Nora and Puciul-Malinowska, Agnieszka and Baliś, Andrzej and Mostafa, Amr and Bald, Ilko and Zapotoczny, Szczepan and Taubert, Andreas}, title = {Surface etching of 3D printed poly(lactic acid) with NaOH}, series = {Polymers}, volume = {12}, journal = {Polymers}, number = {8}, publisher = {MDPI}, address = {Basel}, issn = {2073-4360}, doi = {10.3390/polym12081711}, pages = {16}, year = {2020}, abstract = {The article describes a systematic investigation of the effects of an aqueous NaOH treatment of 3D printed poly(lactic acid) (PLA) scaffolds for surface activation. The PLA surface undergoes several morphology changes and after an initial surface roughening, the surface becomes smoother again before the material dissolves. Erosion rates and surface morphologies can be controlled by the treatment. At the same time, the bulk mechanical properties of the treated materials remain unaltered. This indicates that NaOH treatment of 3D printed PLA scaffolds is a simple, yet viable strategy for surface activation without compromising the mechanical stability of PLA scaffolds.}, language = {en} } @article{FandrichBullerMemczaketal.2017, author = {Fandrich, Artur and Buller, Jens and Memczak, Henry and Stoecklein, W. and Hinrichs, K. and Wischerhoff, E. and Schulz, B. and Laschewsky, Andr{\´e} and Lisdat, Fred}, title = {Responsive Polymer-Electrode Interface-Study of its Thermo- and pH-Sensitivity and the Influence of Peptide Coupling}, series = {Electrochimica acta : the journal of the International Society of Electrochemistry (ISE)}, volume = {229}, journal = {Electrochimica acta : the journal of the International Society of Electrochemistry (ISE)}, publisher = {Elsevier}, address = {Oxford}, issn = {0013-4686}, doi = {10.1016/j.electacta.2017.01.080}, pages = {325 -- 333}, year = {2017}, abstract = {This study introduces a thermally responsive, polymer-based electrode system. The key component is a surface-attached, temperature-responsive poly(oligoethylene glycol) methacrylate (poly(OEGMA)) type polymer bearing photoreactive benzophenone and carboxy groups containing side chains. The responsive behavior of the polymer in aqueous media has been investigated by turbidimetry measurements. Polymer films are formed on gold substrates by means of the photoreactive 2(dicyclohexylphosphino)benzophenone (DPBP) through photocrosslinking. The electrochemical behavior of the resulting polymer-substrate interface has been investigated in buffered [Fe(CN)6](3-)/[Fe (CN)6](4-)solutions at room temperature and under temperature variation by cyclic voltammetry (CV). The CV experiments show that with increasing temperature structural changes of the polymer layer occur, which alter the output of the electrochemical measurement. Repeated heating/cooling cycles analyzed by CV measurements and pH changes analyzed by quartz crystal microbalance with dissipation monitoring (QCM-D) reveal the reversible nature of the restructuring process. The immobilized films are further modified by covalent coupling of two small biomolecules - a hydrophobic peptide and a more hydrophilic one. These attached components influence the hydrophobicity of the layer in a different way the resulting change of the temperature-caused behavior has been studied by CV indicating a different state of the polymer after coupling of the hydrophobic peptide.}, language = {en} } @article{SchneiderFritzschePuciulMalinowskaetal.2020, author = {Schneider, Matthias and Fritzsche, Nora and Puciul-Malinowska, Agnieszka and Balis, Andrzej and Mostafa, Amr and Bald, Ilko and Zapotoczny, Szczepan and Taubert, Andreas}, title = {Surface etching of 3D printed poly(lactic acid) with NaOH: a systematic approach}, series = {Polymers}, volume = {12}, journal = {Polymers}, number = {8}, publisher = {MDPI}, address = {Basel}, pages = {16}, year = {2020}, abstract = {The article describes a systematic investigation of the effects of an aqueous NaOH treatment of 3D printed poly(lactic acid) (PLA) scaffolds for surface activation. The PLA surface undergoes several morphology changes and after an initial surface roughening, the surface becomes smoother again before the material dissolves. Erosion rates and surface morphologies can be controlled by the treatment. At the same time, the bulk mechanical properties of the treated materials remain unaltered. This indicates that NaOH treatment of 3D printed PLA scaffolds is a simple, yet viable strategy for surface activation without compromising the mechanical stability of PLA scaffolds.}, language = {en} } @article{LangeReiterPaetzeletal.2014, author = {Lange, Ilja and Reiter, Sina and Paetzel, Michael and Zykov, Anton and Nefedov, Alexei and Hildebrandt, Jana and Hecht, Stefan and Kowarik, Stefan and Woell, Christof and Heimel, Georg and Neher, Dieter}, title = {Tuning the work function of polar zinc oxide surfaces using modified phosphonic acid self-assembled monolayers}, series = {Advanced functional materials}, volume = {24}, journal = {Advanced functional materials}, number = {44}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1616-301X}, doi = {10.1002/adfm.201401493}, pages = {7014 -- 7024}, year = {2014}, abstract = {Zinc oxide (ZnO) is regarded as a promising alternative material for transparent conductive electrodes in optoelectronic devices. However, ZnO suffers from poor chemical stability. ZnO also has a moderate work function (WF), which results in substantial charge injection barriers into common (organic) semiconductors that constitute the active layer in a device. Controlling and tuning the ZnO WF is therefore necessary but challenging. Here, a variety of phosphonic acid based self-assembled monolayers (SAMs) deposited on ZnO surfaces are investigated. It is demonstrated that they allow the tuning the WF over a wide range of more than 1.5 eV, thus enabling the use of ZnO as both the hole-injecting and electron-injecting contact. The modified ZnO surfaces are characterized using a number of complementary techniques, demonstrating that the preparation protocol yields dense, well-defined molecular monolayers.}, language = {en} }