@article{ZehbeKolloscheLardongetal.2016, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels Based on Poly(methyl methacrylate) and Metal-Containing Ionic Liquids: Correlation between Structure and Mechanical and Electrical Properties}, series = {International journal of molecular sciences}, volume = {17}, journal = {International journal of molecular sciences}, publisher = {MDPI}, address = {Basel}, issn = {1422-0067}, doi = {10.3390/ijms17030391}, pages = {16}, year = {2016}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @article{MondalBhuniaAttallahetal.2016, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Attallah, Ahmed G. and Matthes, Philipp R. and Kelling, Alexandra and Schilde, Uwe and M{\"u}ller-Buschbaum, Klaus and Krause-Rehberg, Reinhard and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Study of the Discrepancies between Crystallographic Porosity and Guest Access into Cadmium-Imidazolate Frameworks and Tunable Luminescence Properties by Incorporation of Lanthanides}, series = {Chemistry - a European journal}, volume = {22}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201504757}, pages = {6905 -- 6913}, year = {2016}, abstract = {An extended member of the isoreticular family of metal-imidazolate framework structures, IFP-6 (IFP=imidazolate framework Potsdam), based on cadmium metal and an in situ functionalized 2-methylimidazolate-4-amide-5-imidate linker is reported. A porous 3D framework with 1D hexagonal channels with accessible pore windows of 0.52nm has been synthesized by using an ionic liquid (IL) linker precursor. IFP-6 shows significant gas uptake capacity only for CO2 and CH4 at elevated pressure, whereas it does not adsorb N-2, H-2, and CH4 under atmospheric conditions. IFP-6 is assumed to deteriorate at the outside of the material during the activation process. This closing of the metal-organic framework (MOF) pores is proven by positron annihilation lifetime spectroscopy (PALS), which revealed inherent crystal defects. PALS results support the conservation of the inner pores of IFP-6. IFP-6 has also been successfully loaded with luminescent trivalent lanthanide ions (Ln(III)=Tb, Eu, and Sm) in a bottom-up one-pot reaction through the in situ generation of the linker ligand and in situ incorporation of photoluminescent Ln ions into the constituting network. The results of photoluminescence investigations and powder XRD provide evidence that the Ln ions are not doped as connectivity centers into the frameworks, but are instead located within the pores of the MOFs. Under UV light irradiation, Tb@IFP-6 and Eu@IFP-6 ((exc)=365nm) exhibit observable emission changes to a greenish and reddish color, respectively, as a result of strong Ln 4f emissions.}, language = {en} } @misc{ZehbeKolloscheLardongetal.2017, author = {Zehbe, Kerstin and Kollosche, Matthias and Lardong, Sebastian and Kelling, Alexandra and Schilde, Uwe and Taubert, Andreas}, title = {Ionogels based on poly(methyl methacrylate) and metal-containing ionic liquids}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400607}, pages = {16}, year = {2017}, abstract = {Ionogels (IGs) based on poly(methyl methacrylate) (PMMA) and the metal-containing ionic liquids (ILs) bis-1-butyl-3-methlimidazolium tetrachloridocuprate(II), tetrachloride cobaltate(II), and tetrachlorido manganate(II) have been synthesized and their mechanical and electrical properties have been correlated with their microstructure. Unlike many previous examples, the current IGs show a decreasing stability in stress-strain experiments on increasing IL fractions. The conductivities of the current IGs are lower than those observed in similar examples in the literature. Both effects are caused by a two-phase structure with micrometer-sized IL-rich domains homogeneously dispersed an IL-deficient continuous PMMA phase. This study demonstrates that the IL-polymer miscibility and the morphology of the IGs are key parameters to control the (macroscopic) properties of IGs.}, language = {en} } @article{MondalMuellerJungingeretal.2014, author = {Mondal, Suvendu Sekhar and Mueller, Holger and Junginger, Matthias and Kelling, Alexandra and Schilde, Uwe and Strehmel, Veronika and Holdt, Hans-J{\"u}rgen}, title = {Imidazolium 2-substituted 4,5-dicyanoimidazolate ionic liquids: synthesis, crystal structures and structure-thermal property relationships}, series = {Chemistry - a European journal}, volume = {20}, journal = {Chemistry - a European journal}, number = {26}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201304934}, pages = {8170 -- 8181}, year = {2014}, abstract = {Thirty six novel ionic liquids (ILs) with 1-butyl-3-methylimidazolium and 3-methyl-1-octylimidazolium cations paired with 2-substitited 4,5-dicyanoimidazolate anions (substituent at C2=chloro, bromo, methoxy, vinyl, amino, methyl, ethyl, propyl, isopropyl, butyl, pentyl, hexyl, heptyl, octyl, nonyl, decyl, undecyl and phenyl) have been synthesized and characterized by using differential scanning calorimetry (DSC), thermogravimetric analysis (TGA) and single-crystal X-ray crystallography. The effects of cation and anion type and structure on the thermal properties of the resulting ionic liquids, including several room temperature ionic liquids (RTILs) are examined and discussed. ILs exhibited large liquid and crystallization ranges and formed glasses on cooling with glass transition temperatures in the range of -22 to -68 degrees C. The effects of alkyl substituents of the imidazolate anion reflected the crystallization, melting points and thermal decomposition of the ILs. The Coulombic packing force, van der Waals forces and size of the anions can be considered for altering the thermal transitions. Three crystal structures of the ILs were determined and the effects of changes to the cations and anions on the packing of the structure were investigated.}, language = {en} } @misc{MondalBhuniaDemeshkoetal.2013, author = {Mondal, Suvendu Sekhar and Bhunia, Asamanjoy and Demeshko, Serhiy and Kelling, Alexandra and Schilde, Uwe and Janiak, Christoph and Holdt, Hans-J{\"u}rgen}, title = {Synthesis of a Co(II)-imidazolate framework from an anionic linker precursor}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-94424}, pages = {39 -- 42}, year = {2013}, abstract = {A Co(II)-imidazolate-4-amide-5-imidate based MOF, IFP-5, is synthesized by using an imidazolate anion-based novel ionic liquid as a linker precursor under solvothermal conditions. IFP-5 shows significant amounts of gas (N2, CO2, CH4 and H2) uptake capacities. IFP-5 exhibits an independent high spin Co(II) centre and antiferromagnetic coupling.}, language = {en} }