@article{MesterWillnerFrieleretal.2021, author = {Mester, Benedikt and Willner, Sven N. and Frieler, Katja and Schewe, Jacob}, title = {Evaluation of river flood extent simulated with multiple global hydrological models and climate forcings}, series = {Environmental research letters : ERL / Institute of Physics}, volume = {16}, journal = {Environmental research letters : ERL / Institute of Physics}, number = {9}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/ac188d}, pages = {15}, year = {2021}, abstract = {Global flood models (GFMs) are increasingly being used to estimate global-scale societal and economic risks of river flooding. Recent validation studies have highlighted substantial differences in performance between GFMs and between validation sites. However, it has not been systematically quantified to what extent the choice of the underlying climate forcing and global hydrological model (GHM) influence flood model performance. Here, we investigate this sensitivity by comparing simulated flood extent to satellite imagery of past flood events, for an ensemble of three climate reanalyses and 11 GHMs. We study eight historical flood events spread over four continents and various climate zones. For most regions, the simulated inundation extent is relatively insensitive to the choice of GHM. For some events, however, individual GHMs lead to much lower agreement with observations than the others, mostly resulting from an overestimation of inundated areas. Two of the climate forcings show very similar results, while with the third, differences between GHMs become more pronounced. We further show that when flood protection standards are accounted for, many models underestimate flood extent, pointing to deficiencies in their flood frequency distribution. Our study guides future applications of these models, and highlights regions and models where targeted improvements might yield the largest performance gains.}, language = {en} } @article{DevittNealWageneretal.2021, author = {Devitt, Laura and Neal, Jeffrey and Wagener, Thorsten and Coxon, Gemma}, title = {Uncertainty in the extreme flood magnitude estimates of large-scale flood hazard models}, series = {Environmental research letters : ERL / Institute of Physics}, volume = {16}, journal = {Environmental research letters : ERL / Institute of Physics}, number = {6}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {1748-9326}, doi = {10.1088/1748-9326/abfac4}, pages = {15}, year = {2021}, abstract = {The growing worldwide impact of flood events has motivated the development and application of global flood hazard models (GFHMs). These models have become useful tools for flood risk assessment and management, especially in regions where little local hazard information is available. One of the key uncertainties associated with GFHMs is the estimation of extreme flood magnitudes to generate flood hazard maps. In this study, the 1-in-100 year flood (Q100) magnitude was estimated using flow outputs from four global hydrological models (GHMs) and two global flood frequency analysis datasets for 1350 gauges across the conterminous US. The annual maximum flows of the observed and modelled timeseries of streamflow were bootstrapped to evaluate the sensitivity of the underlying data to extrapolation. Results show that there are clear spatial patterns of bias associated with each method. GHMs show a general tendency to overpredict Western US gauges and underpredict Eastern US gauges. The GloFAS and HYPE models underpredict Q100 by more than 25\% in 68\% and 52\% of gauges, respectively. The PCR-GLOBWB and CaMa-Flood models overestimate Q100 by more than 25\% at 60\% and 65\% of gauges in West and Central US, respectively. The global frequency analysis datasets have spatial variabilities that differ from the GHMs. We found that river basin area and topographic elevation explain some of the spatial variability in predictive performance found in this study. However, there is no single model or method that performs best everywhere, and therefore we recommend a weighted ensemble of predictions of extreme flood magnitudes should be used for large-scale flood hazard assessment.}, language = {en} } @article{HudsonHagedoornBubeck2020, author = {Hudson, Paul and Hagedoorn, Liselotte and Bubeck, Philip}, title = {Potential linkages between social capital, flood risk perceptions, and self-efficacy}, series = {International journal of disaster risk science}, volume = {11}, journal = {International journal of disaster risk science}, number = {3}, publisher = {Springer}, address = {Berlin}, issn = {2095-0055}, doi = {10.1007/s13753-020-00259-w}, pages = {251 -- 262}, year = {2020}, abstract = {A growing focus is being placed on both individuals and communities to adapt to flooding as part of the Sendai Framework for Disaster Risk Reduction 2015-2030. Adaptation to flooding requires sufficient social capital (linkages between members of society), risk perceptions (understanding of risk), and self-efficacy (self-perceived ability to limit disaster impacts) to be effective. However, there is limited understanding of how social capital, risk perceptions, and self-efficacy interact. We seek to explore how social capital interacts with variables known to increase the likelihood of successful adaptation. To study these linkages we analyze survey data of 1010 respondents across two communities in Thua Tien-Hue Province in central Vietnam, using ordered probit models. We find positive correlations between social capital, risk perceptions, and self-efficacy overall. This is a partly contrary finding to what was found in previous studies linking these concepts in Europe, which may be a result from the difference in risk context. The absence of an overall negative exchange between these factors has positive implications for proactive flood risk adaptation.}, language = {en} } @article{Hudson2020, author = {Hudson, Paul}, title = {The affordability of flood risk property-level adaptation measures}, series = {Risk Analysis}, volume = {40}, journal = {Risk Analysis}, number = {6}, publisher = {Wiley}, address = {Hoboken}, issn = {0272-4332}, doi = {10.1111/risa.13465}, pages = {1151 -- 1167}, year = {2020}, abstract = {The affordability of property-level adaptation measures against flooding is crucial due to the movement toward integrated flood risk management, which requires the individuals threatened by flooding to actively manage flooding. It is surprising to find that affordability is not often discussed, given the important roles that affordability and social justice play regarding flood risk management. This article provides a starting point for investigating the potential rate of unaffordability of flood risk property-level adaptation measures across Europe using two definitions of affordability, which are combined with two different affordability thresholds from within flood risk research. It uses concepts of investment and payment affordability, with affordability thresholds based on residual income and expenditure definitions of unaffordability. These concepts, in turn, are linked with social justice through fairness concerns, in that, all should have equal capability to act, of which affordability is one avenue. In doing so, it was found that, for a large proportion of Europe, property owners generally cannot afford to make one-time payment of the cost of protective measures. These can be made affordable with installment payment mechanisms or similar mechanisms that spread costs over time. Therefore, the movement toward greater obligations for flood-prone residents to actively adapt to flooding should be accompanied by socially accessible financing mechanisms.}, language = {en} } @phdthesis{Brill2022, author = {Brill, Fabio Alexander}, title = {Applications of machine learning and open geospatial data in flood risk modelling}, doi = {10.25932/publishup-55594}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-555943}, school = {Universit{\"a}t Potsdam}, pages = {xix, 124}, year = {2022}, abstract = {Der technologische Fortschritt erlaubt es, zunehmend komplexe Vorhersagemodelle auf Basis immer gr{\"o}ßerer Datens{\"a}tze zu produzieren. F{\"u}r das Risikomanagement von Naturgefahren sind eine Vielzahl von Modellen als Entscheidungsgrundlage notwendig, z.B. in der Auswertung von Beobachtungsdaten, f{\"u}r die Vorhersage von Gefahrenszenarien, oder zur statistischen Absch{\"a}tzung der zu erwartenden Sch{\"a}den. Es stellt sich also die Frage, inwiefern moderne Modellierungsans{\"a}tze wie das maschinelle Lernen oder Data-Mining in diesem Themenbereich sinnvoll eingesetzt werden k{\"o}nnen. Zus{\"a}tzlich ist im Hinblick auf die Datenverf{\"u}gbarkeit und -zug{\"a}nglichkeit ein Trend zur {\"O}ffnung (open data) zu beobachten. Thema dieser Arbeit ist daher, die M{\"o}glichkeiten und Grenzen des maschinellen Lernens und frei verf{\"u}gbarer Geodaten auf dem Gebiet der Hochwasserrisikomodellierung im weiteren Sinne zu untersuchen. Da dieses {\"u}bergeordnete Thema sehr breit ist, werden einzelne relevante Aspekte herausgearbeitet und detailliert betrachtet. Eine prominente Datenquelle im Bereich Hochwasser ist die satellitenbasierte Kartierung von {\"U}berflutungsfl{\"a}chen, die z.B. {\"u}ber den Copernicus Service der Europ{\"a}ischen Union frei zur Verf{\"u}gung gestellt werden. Große Hoffnungen werden in der wissenschaftlichen Literatur in diese Produkte gesetzt, sowohl f{\"u}r die akute Unterst{\"u}tzung der Einsatzkr{\"a}fte im Katastrophenfall, als auch in der Modellierung mittels hydrodynamischer Modelle oder zur Schadensabsch{\"a}tzung. Daher wurde ein Fokus in dieser Arbeit auf die Untersuchung dieser Flutmasken gelegt. Aus der Beobachtung, dass die Qualit{\"a}t dieser Produkte in bewaldeten und urbanen Gebieten unzureichend ist, wurde ein Verfahren zur nachtr{\"a}glichenVerbesserung mittels maschinellem Lernen entwickelt. Das Verfahren basiert auf einem Klassifikationsalgorithmus der nur Trainingsdaten von einer vorherzusagenden Klasse ben{\"o}tigt, im konkreten Fall also Daten von {\"U}berflutungsfl{\"a}chen, nicht jedoch von der negativen Klasse (trockene Gebiete). Die Anwendung f{\"u}r Hurricane Harvey in Houston zeigt großes Potenzial der Methode, abh{\"a}ngig von der Qualit{\"a}t der urspr{\"u}nglichen Flutmaske. Anschließend wird anhand einer prozessbasierten Modellkette untersucht, welchen Einfluss implementierte physikalische Prozessdetails auf das vorhergesagte statistische Risiko haben. Es wird anschaulich gezeigt, was eine Risikostudie basierend auf etablierten Modellen leisten kann. Solche Modellketten sind allerdings bereits f{\"u}r Flusshochwasser sehr komplex, und f{\"u}r zusammengesetzte oder kaskadierende Ereignisse mit Starkregen, Sturzfluten, und weiteren Prozessen, kaum vorhanden. Im vierten Kapitel dieser Arbeit wird daher getestet, ob maschinelles Lernen auf Basis von vollst{\"a}ndigen Schadensdaten einen direkteren Weg zur Schadensmodellierung erm{\"o}glicht, der die explizite Konzeption einer solchen Modellkette umgeht. Dazu wird ein staatlich erhobener Datensatz der gesch{\"a}digten Geb{\"a}ude w{\"a}hrend des schweren El Ni{\~n}o Ereignisses 2017 in Peru verwendet. In diesem Kontext werden auch die M{\"o}glichkeiten des Data-Mining zur Extraktion von Prozessverst{\"a}ndnis ausgelotet. Es kann gezeigt werden, dass diverse frei verf{\"u}gbare Geodaten n{\"u}tzliche Informationen f{\"u}r die Gefahren- und Schadensmodellierung von komplexen Flutereignissen liefern, z.B. satellitenbasierte Regenmessungen, topographische und hydrographische Information, kartierte Siedlungsfl{\"a}chen, sowie Indikatoren aus Spektraldaten. Zudem zeigen sich Erkenntnisse zu den Sch{\"a}digungsprozessen, die im Wesentlichen mit den vorherigen Erwartungen in Einklang stehen. Die maximale Regenintensit{\"a}t wirkt beispielsweise in St{\"a}dten und steilen Schluchten st{\"a}rker sch{\"a}digend, w{\"a}hrend die Niederschlagssumme in tiefliegenden Flussgebieten und bewaldeten Regionen als aussagekr{\"a}ftiger befunden wurde. L{\"a}ndliche Gebiete in Peru weisen in der pr{\"a}sentierten Studie eine h{\"o}here Vulnerabilit{\"a}t als die Stadtgebiete auf. Jedoch werden auch die grunds{\"a}tzlichen Grenzen der Methodik und die Abh{\"a}ngigkeit von spezifischen Datens{\"a}tzen and Algorithmen offenkundig. In der {\"u}bergreifenden Diskussion werden schließlich die verschiedenen Methoden - prozessbasierte Modellierung, pr{\"a}diktives maschinelles Lernen, und Data-Mining - mit Blick auf die Gesamtfragestellungen evaluiert. Im Bereich der Gefahrenbeobachtung scheint eine Fokussierung auf neue Algorithmen sinnvoll. Im Bereich der Gefahrenmodellierung, insbesondere f{\"u}r Flusshochwasser, wird eher die Verbesserung von physikalischen Modellen, oder die Integration von prozessbasierten und statistischen Verfahren angeraten. In der Schadensmodellierung fehlen nach wie vor die großen repr{\"a}sentativen Datens{\"a}tze, die f{\"u}r eine breite Anwendung von maschinellem Lernen Voraussetzung ist. Daher ist die Verbesserung der Datengrundlage im Bereich der Sch{\"a}den derzeit als wichtiger einzustufen als die Auswahl der Algorithmen.}, language = {en} } @article{VogelOzturkRiemeretal.2017, author = {Vogel, Kristin and Ozturk, Ugur and Riemer, Adrian and Laudan, Jonas and Sieg, Tobias and Wendi, Dadiyorto and Agarwal, Ankit and Roezer, Viktor and Korup, Oliver and Thieken, Annegret}, title = {Die Sturzflut von Braunsbach am 29. Mai 2016 - Entstehung, Ablauf und Sch{\"a}den eines „Jahrhundertereignisses"}, series = {Hydrologie und Wasserbewirtschaftung}, volume = {61}, journal = {Hydrologie und Wasserbewirtschaftung}, number = {3}, publisher = {Bundesanst. f{\"u}r Gew{\"a}sserkunde}, address = {Koblenz}, issn = {1439-1783}, doi = {10.5675/HyWa_2017,3_2}, pages = {163 -- 175}, year = {2017}, abstract = {Am Abend des 29. Mai 2016 wurde der Ort Braunsbach im Landkreis Schw{\"a}bisch-Hall (Baden-W{\"u}rttemberg) von einer Sturzflut getroffen, bei der mehrere H{\"a}user stark besch{\"a}digt oder zerst{\"o}rt wurden. Die Sturzflut war eine der Unwetterfolgen, die im Fr{\"u}hsommer 2016 vom Tiefdruckgebiet Elvira ausgel{\"o}st wurden. Der vorliegende Bericht ist der zweite Teil einer Doppelver{\"o}ffentlichung, welche die Ergebnisse zur Untersuchung des Sturzflutereignisses im Rahmen des DFG-Graduiertenkollegs "Naturgefahren und Risiken in einer sich ver{\"a}ndernden Welt" (NatRiskChange, GRK 2043/1) der Universit{\"a}t Potsdam pr{\"a}sentiert. W{\"a}hrend Teil 1 die meteorologischen und hydrologischen Ereignisse analysiert, fokussiert Teil 2 auf die geomorphologischen Prozesse und die verursachten Geb{\"a}udesch{\"a}den. Dazu wurden Ursprung und Ausmaß des w{\"a}hrend des Sturzflutereignisses mobilisierten und in den Ort getragenen Materials untersucht. Des Weiteren wurden zu 96 betroffenen Geb{\"a}uden Daten zum Schadensgrad sowie Prozess- und Geb{\"a}udecharakteristika aufgenommen und ausgewertet. Die Untersuchungen zeigen, dass bei der Betrachtung von Hochwassergef{\"a}hrdung die Ber{\"u}cksichtigung von Sturzfluten und ihrer speziellen Charakteristika, wie hoher Feststofftransport und sprunghaftes Verhalten insbesondere in bebautem Gel{\"a}nde, wesentlich ist, um effektive Schutzmaßnahmen ergreifen zu k{\"o}nnen.}, language = {de} } @phdthesis{Nguyen2021, author = {Nguyen, Van Khanh Triet}, title = {Flood dynamics in the Vietnamese Mekong Delta}, doi = {10.25932/publishup-51283}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-512830}, school = {Universit{\"a}t Potsdam}, pages = {xx, 113}, year = {2021}, abstract = {Today, the Mekong Delta in the southern of Vietnam is home for 18 million people. The delta also accounts for more than half of the country's food production and 80\% of the exported rice. Due to the low elevation, it is highly susceptible to the risk of fluvial and coastal flooding. Although extreme floods often result in excessive damages and economic losses, the annual flood pulse from the Mekong is vital to sustain agricultural cultivation and livelihoods of million delta inhabitants. Delta-wise risk management and adaptation strategies are required to mitigate the adverse impacts from extreme events while capitalising benefits from floods. However, a proper flood risk management has not been implemented in the VMD, because the quantification of flood damage is often overlooked and the risks are thus not quantified. So far, flood management has been exclusively focused on engineering measures, i.e. high- and low- dyke systems, aiming at flood-free or partial inundation control without any consideration of the actual risks or a cost-benefit analysis. Therefore, an analysis of future delta flood dynamics driven these stressors is valuable to facilitate the transition from sole hazard control towards a risk management approach, which is more cost-effective and also robust against future changes in risk. Built on these research gaps, this thesis investigates the current state and future projections of flood hazard, damage and risk to rice cultivation, the most important economic activity in the VMD. The study quantifies the changes in risk and hazard brought by the development of delta-based flood control measures in the last decades, and analyses the expected changes in risk driven by the changing climate, rising sea-level and deltaic land subsidence, and finally the development of hydropower projects in the Mekong Basin. For this purpose, flood trend analyses and comprehensive hydraulic modelling were performed, together with the development of a concept to quantify flood damage and risk to rice plantation. The analysis of observed flood levels revealed strong and robust increasing trends of peak and duration downstream of the high-dyke areas with a step change in 2000/2001, i.e. after the disastrous flood which initiated the high-dyke development. These changes were in contrast to the negative trends detected upstream, suggested that high-dyke development has shifted flood hazard downstream. Findings of the trend's analysis were later confirmed by hydraulic simulations of the two recent extreme floods in 2000 and 2011, where the hydrological boundaries and dyke system settings were interchanged. However, the high-dyke system was not the only and often not the main cause for a shift of flood hazard, as a comparative analysis of these two extreme floods proved. The high-dyke development was responsible for 20-90\% of the observed changes in flood level between 2000 and 2011, with large spatial variances. The particular flood hydrograph of the two events had the highest contribution in the northern part of the delta, while the tidal level had 2-3 times higher influence than the high-dyke in the lower-central and coastal areas downstream of high-dyke areas. The impact of the high-dyke development was highest in the areas closely downstream of the high-dyke area just south of the Cambodia-Vietnam border. The hydraulic simulations also validated that the concurrence of the flood peak with spring tides, i.e. high sea level along the coast, amplified the flood level and inundation in the central and coastal regions substantially. The risk assessment quantified the economic losses of rice cultivation to USD 25.0 and 115 million (0.02-0.1\% of the total GDP of Vietnam in 2011) corresponding to the 10-year and the 100-year floods, with an expected annual damage of about USD 4.5 million. A particular finding is that the flood damage was highly sensitive to flood timing. Here, a 10-year event with an early peak, i.e. late August-September, could cause as much damage as a 100-year event that peaked in October. This finding underlines the importance of a reliable early flood warning, which could substantially reduce the damage to rice crops and thus the risk. The developed risk assessment concept was furthermore applied to investigate two high-dyke development alternatives, which are currently under discussion among the administrative bodies in Vietnam, but also in the public. The first option favouring the utilization of the current high-dyke compartments as flood retention areas instead for rice cropping during the flood season could reduce flood hazard and expected losses by 5-40\%, depending on the region of the delta. On the contrary, the second option promoting the further extension of the areas protected by high-dyke to facilitate third rice crop planting on a larger area, tripled the current expected annual flood damage. This finding challenges the expected economic benefit of triple rice cultivation, in addition to the already known reducing of nutrient supply by floodplain sedimentation and thus higher costs for fertilizers. The economic benefits of the high-dyke and triple rice cropping system is further challenged by the changes in the flood dynamics to be expected in future. For the middle of the 21st century (2036-2065) the effective sea-level rise an increase of the inundation extent by 20-27\% was projected. This corresponds to an increase of flood damage to rice crops in dry, normal and wet year by USD 26.0, 40.0 and 82.0 million in dry, normal and wet year compared to the baseline period 1971-2000. Hydraulic simulations indicated that the planned massive development of hydropower dams in the Mekong Basin could potentially compensate the increase in flood hazard and agriculture losses stemming from climate change. However, the benefits of dams as mitigation of flood losses are highly uncertain, because a) the actual development of the dams is highly disputed, b) the operation of the dams is primarily targeted at power generation, not flood control, and c) this would require international agreements and cooperation, which is difficult to achieve in South-East Asia. The theoretical flood mitigation benefit is additionally challenged by a number of negative impacts of the dam development, e.g. disruption of floodplain inundation in normal, non-extreme flood years. Adding to the certain reduction of sediment and nutrient load to the floodplains, hydropower dams will drastically impair rice and agriculture production, the basis livelihoods of million delta inhabitants. In conclusion, the VMD is expected to face increasing threats of tidal induced floods in the coming decades. Protection of the entire delta coastline solely with "hard" engineering flood protection structures is neither technically nor economically feasible, adaptation and mitigation actions are urgently required. Better control and reduction of groundwater abstraction is thus strongly recommended as an immediate and high priority action to reduce the land subsidence and thus tidal flooding and salinity intrusion in the delta. Hydropower development in the Mekong basin might offer some theoretical flood protection for the Mekong delta, but due to uncertainties in the operation of the dams and a number of negative effects, the dam development cannot be recommended as a strategy for flood management. For the Vietnamese authorities, it is advisable to properly maintain the existing flood protection structures and to develop flexible risk-based flood management plans. In this context the study showed that the high-dyke compartments can be utilized for emergency flood management in extreme events. For this purpose, a reliable flood forecast is essential, and the action plan should be materialised in official documents and legislation to assure commitment and consistency in the implementation and operation.}, language = {en} } @phdthesis{MetinUsta2021, author = {Metin Usta, Ay{\c{s}}e Duha}, title = {The role of risk components and spatial dependence in flood risk estimations}, doi = {10.25932/publishup-49255}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-492554}, school = {Universit{\"a}t Potsdam}, pages = {XIX, 97}, year = {2021}, abstract = {Flooding is a vast problem in many parts of the world, including Europe. It occurs mainly due to extreme weather conditions (e.g. heavy rainfall and snowmelt) and the consequences of flood events can be devastating. Flood risk is mainly defined as a combination of the probability of an event and its potential adverse impacts. Therefore, it covers three major dynamic components: hazard (physical characteristics of a flood event), exposure (people and their physical environment that being exposed to flood), and vulnerability (the elements at risk). Floods are natural phenomena and cannot be fully prevented. However, their risk can be managed and mitigated. For a sound flood risk management and mitigation, a proper risk assessment is needed. First of all, this is attained by a clear understanding of the flood risk dynamics. For instance, human activity may contribute to an increase in flood risk. Anthropogenic climate change causes higher intensity of rainfall and sea level rise and therefore an increase in scale and frequency of the flood events. On the other hand, inappropriate management of risk and structural protection measures may not be very effective for risk reduction. Additionally, due to the growth of number of assets and people within the flood-prone areas, risk increases. To address these issues, the first objective of this thesis is to perform a sensitivity analysis to understand the impacts of changes in each flood risk component on overall risk and further their mutual interactions. A multitude of changes along the risk chain are simulated by regional flood model (RFM) where all processes from atmosphere through catchment and river system to damage mechanisms are taken into consideration. The impacts of changes in risk components are explored by plausible change scenarios for the mesoscale Mulde catchment (sub-basin of the Elbe) in Germany. A proper risk assessment is ensured by the reasonable representation of the real-world flood event. Traditionally, flood risk is assessed by assuming homogeneous return periods of flood peaks throughout the considered catchment. However, in reality, flood events are spatially heterogeneous and therefore traditional assumption misestimates flood risk especially for large regions. In this thesis, two different studies investigate the importance of spatial dependence in large scale flood risk assessment for different spatial scales. In the first one, the "real" spatial dependence of return period of flood damages is represented by continuous risk modelling approach where spatially coherent patterns of hydrological and meteorological controls (i.e. soil moisture and weather patterns) are included. Further the risk estimations under this modelled dependence assumption are compared with two other assumptions on the spatial dependence of return periods of flood damages: complete dependence (homogeneous return periods) and independence (randomly generated heterogeneous return periods) for the Elbe catchment in Germany. The second study represents the "real" spatial dependence by multivariate dependence models. Similar to the first study, the three different assumptions on the spatial dependence of return periods of flood damages are compared, but at national (United Kingdom and Germany) and continental (Europe) scales. Furthermore, the impacts of the different models, tail dependence, and the structural flood protection level on the flood risk under different spatial dependence assumptions are investigated. The outcomes of the sensitivity analysis framework suggest that flood risk can vary dramatically as a result of possible change scenarios. The risk components that have not received much attention (e.g. changes in dike systems and in vulnerability) may mask the influence of climate change that is often investigated component. The results of the spatial dependence research in this thesis further show that the damage under the false assumption of complete dependence is 100 \% larger than the damage under the modelled dependence assumption, for the events with return periods greater than approximately 200 years in the Elbe catchment. The complete dependence assumption overestimates the 200-year flood damage, a benchmark indicator for the insurance industry, by 139 \%, 188 \% and 246 \% for the UK, Germany and Europe, respectively. The misestimation of risk under different assumptions can vary from upstream to downstream of the catchment. Besides, tail dependence in the model and flood protection level in the catchments can affect the risk estimation and the differences between different spatial dependence assumptions. In conclusion, the broader consideration of the risk components, which possibly affect the flood risk in a comprehensive way, and the consideration of the spatial dependence of flood return periods are strongly recommended for a better understanding of flood risk and consequently for a sound flood risk management and mitigation.}, language = {en} } @article{HudsonPhamBubeck2019, author = {Hudson, Paul and Pham, My and Bubeck, Philip}, title = {An evaluation and monetary assessment of the impact of flooding on subjective well-being across genders in Vietnam}, series = {Climate \& development}, volume = {11}, journal = {Climate \& development}, number = {7}, publisher = {Routledge, Taylor \& Francis Group}, address = {Abingdon}, issn = {1756-5529}, doi = {10.1080/17565529.2019.1579698}, pages = {623 -- 637}, year = {2019}, abstract = {The intangible impacts of floods on welfare are not well investigated, even though they are important aspects of welfare. Moreover, flooding has gender based impacts on welfare. These differing impacts create a gender based flood risk resilience gap. We study the intangible impacts of flood risk on the subjective well-being of residents in central Vietnam. The measurement of intangible impacts through subjective well-being is a growing field within flood risk research. We find an initial drop in welfare through subjective well-being across genders when a flood is experienced. Male respondents tended to recover their welfare losses by around 80\% within 5 years while female respondents were associated with a welfare recovery of around 70\%. A monetization of the impacts floods have on an individual's subjective well-being shows that for the average female respondent, between 41\% to 86\% of annual income would be required to compensate subjective well-being losses after 5 years of experiencing a flood. The corresponding value for males is 30\% to 57\% of annual income. This shows that the intangible impacts of flood risk are important (across genders) and need to be integrated into flood (or climate) risk assessments to develop more socially appropriate risk management strategies.}, language = {en} } @article{SairamSchroeterRoezeretal.2019, author = {Sairam, Nivedita and Schroeter, Kai and R{\"o}zer, Viktor and Merz, Bruno and Kreibich, Heidi}, title = {Hierarchical Bayesian Approach for Modeling Spatiotemporal Variability in Flood Damage Processes}, series = {Water resources research}, volume = {55}, journal = {Water resources research}, number = {10}, publisher = {American Geophysical Union}, address = {Washington}, issn = {0043-1397}, doi = {10.1029/2019WR025068}, pages = {8223 -- 8237}, year = {2019}, abstract = {Flood damage processes are complex and vary between events and regions. State-of-the-art flood loss models are often developed on the basis of empirical damage data from specific case studies and do not perform well when spatially and temporally transferred. This is due to the fact that such localized models often cover only a small set of possible damage processes from one event and a region. On the other hand, a single generalized model covering multiple events and different regions ignores the variability in damage processes across regions and events due to variables that are not explicitly accounted for individual households. We implement a hierarchical Bayesian approach to parameterize widely used depth-damage functions resulting in a hierarchical (multilevel) Bayesian model (HBM) for flood loss estimation that accounts for spatiotemporal heterogeneity in damage processes. We test and prove the hypothesis that, in transfer scenarios, HBMs are superior compared to generalized and localized regression models. In order to improve loss predictions for regions and events for which no empirical damage data are available, we use variables pertaining to specific region- and event-characteristics representing commonly available expert knowledge as group-level predictors within the HBM.}, language = {en} }