@misc{WolffSchindlerEnglertetal.2016, author = {Wolff, Wanja and Schindler, Sebastian and Englert, Christoph and Brand, Ralf and Kissler, Johanna}, title = {Uninstructed BIAT faking when ego depleted or in normal state}, series = {BMC neuroscience}, journal = {BMC neuroscience}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-407342}, pages = {12}, year = {2016}, abstract = {Background: Deception can distort psychological tests on socially sensitive topics. Understanding the cerebral processes that are involved in such faking can be useful in detection and prevention of deception. Previous research shows that faking a brief implicit association test (BIAT ) evokes a characteristic ERP response. It is not yet known whether temporarily available self-control resources moderate this response. We randomly assigned 22 participants (15 females, 24.23 ± 2.91 years old) to a counterbalanced repeated-measurements design. Participants first com- pleted a Brief-IAT (BIAT ) on doping attitudes as a baseline measure and were then instructed to fake a negative dop - ing attitude both when self-control resources were depleted and non-depleted. Cerebral activity during BIAT perfor - mance was assessed using high-density EEG. Results: Compared to the baseline BIAT, event-related potentials showed a first interaction at the parietal P1, while significant post hoc differences were found only at the later occurring late positive potential. Here, signifi- cantly decreased amplitudes were recorded for 'normal' faking, but not in the depletion condition. In source space, enhanced activity was found for 'normal' faking in the bilateral temporoparietal junction. Behaviorally, participants were successful in faking the BIAT successfully in both conditions. Conclusions: Results indicate that temporarily available self-control resources do not affect overt faking success on a BIAT. However, differences were found on an electrophysiological level. This indicates that while on a phenotypical level self-control resources play a negligible role in deliberate test faking the underlying cerebral processes are markedly different.}, language = {en} } @misc{EnglertWolff2015, author = {Englert, Chris and Wolff, Wanja}, title = {Neuroenhancement and the strength model of self-control}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {424}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-406312}, pages = {4}, year = {2015}, abstract = {Neuroenhancement (NE), the use of substances as a means to enhance performance, has garnered considerable scientific attention of late. While ethical and epidemiological publications on the topic accumulate, there is a lack of theory-driven psychological research that aims at understanding psychological drivers of NE. In this perspective article we argue that self-control strength offers a promising theory-based approach to further understand and investigate NE behavior. Using the strength model of self-control, we derive two theory-driven perspectives on NE-self-control research. First, we propose that individual differences in state/trait self-control strength differentially affect NE behavior based on one's individual experience of NE use. Building upon this, we outline promising research questions that (will) further elucidate our understanding of NE based on the strength model's propositions. Second, we discuss evidence indicating that popular NE substances (like Methylphenidate) may counteract imminent losses of self-control strength. We outline how further research on NE's effects on the ego-depletion effect may further broaden our understanding of the strength model of self-control.}, language = {en} }