@phdthesis{Omelchenko2021, author = {Omelchenko, Oleh}, title = {Synchronit{\"a}t-und-Unordnung-Muster in Netzwerken gekoppelter Oszillatoren}, doi = {10.25932/publishup-53596}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-535961}, school = {Universit{\"a}t Potsdam}, pages = {152}, year = {2021}, abstract = {Synchronization of coupled oscillators manifests itself in many natural and man-made systems, including cyrcadian clocks, central pattern generators, laser arrays, power grids, chemical and electrochemical oscillators, only to name a few. The mathematical description of this phenomenon is often based on the paradigmatic Kuramoto model, which represents each oscillator by one scalar variable, its phase. When coupled, phase oscillators constitute a high-dimensional dynamical system, which exhibits complex behaviour, ranging from synchronized uniform oscillation to quasiperiodicity and chaos. The corresponding collective rhythms can be useful or harmful to the normal operation of various systems, therefore they have been the subject of much research. Initially, synchronization phenomena have been studied in systems with all-to-all (global) and nearest-neighbour (local) coupling, or on random networks. However, in recent decades there has been a lot of interest in more complicated coupling structures, which take into account the spatially distributed nature of real-world oscillator systems and the distance-dependent nature of the interaction between their components. Examples of such systems are abound in biology and neuroscience. They include spatially distributed cell populations, cilia carpets and neural networks relevant to working memory. In many cases, these systems support a rich variety of patterns of synchrony and disorder with remarkable properties that have not been observed in other continuous media. Such patterns are usually referred to as the coherence-incoherence patterns, but in symmetrically coupled oscillator systems they are also known by the name chimera states. The main goal of this work is to give an overview of different types of collective behaviour in large networks of spatially distributed phase oscillators and to develop mathematical methods for their analysis. We focus on the Kuramoto models for one-, two- and three-dimensional oscillator arrays with nonlocal coupling, where the coupling extends over a range wider than nearest neighbour coupling and depends on separation. We use the fact that, for a special (but still quite general) phase interaction function, the long-term coarse-grained dynamics of the above systems can be described by a certain integro-differential equation that follows from the mathematical approach called the Ott-Antonsen theory. We show that this equation adequately represents all relevant patterns of synchrony and disorder, including stationary, periodically breathing and moving coherence-incoherence patterns. Moreover, we show that this equation can be used to completely solve the existence and stability problem for each of these patterns and to reliably predict their main properties in many application relevant situations.}, language = {en} } @phdthesis{Teichmann2021, author = {Teichmann, Erik}, title = {Partial synchronization in coupled systems with repulsive and attractive interaction}, doi = {10.25932/publishup-52894}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-528943}, school = {Universit{\"a}t Potsdam}, pages = {x, 96}, year = {2021}, abstract = {Partial synchronous states exist in systems of coupled oscillators between full synchrony and asynchrony. They are an important research topic because of their variety of different dynamical states. Frequently, they are studied using phase dynamics. This is a caveat, as phase dynamics are generally obtained in the weak coupling limit of a first-order approximation in the coupling strength. The generalization to higher orders in the coupling strength is an open problem. Of particular interest in the research of partial synchrony are systems containing both attractive and repulsive coupling between the units. Such a mix of coupling yields very specific dynamical states that may help understand the transition between full synchrony and asynchrony. This thesis investigates partial synchronous states in mixed-coupling systems. First, a method for higher-order phase reduction is introduced to observe interactions beyond the pairwise one in the first-order phase description, hoping that these may apply to mixed-coupling systems. This new method for coupled systems with known phase dynamics of the units gives correct results but, like most comparable methods, is computationally expensive. It is applied to three Stuart-Landau oscillators coupled in a line with a uniform coupling strength. A numerical method is derived to verify the analytical results. These results are interesting but give importance to simpler phase models that still exhibit exotic states. Such simple models that are rarely considered are Kuramoto oscillators with attractive and repulsive interactions. Depending on how the units are coupled and the frequency difference between the units, it is possible to achieve many different states. Rich synchronization dynamics, such as a Bellerophon state, are observed when considering a Kuramoto model with attractive interaction in two subpopulations (groups) and repulsive interactions between groups. In two groups, one attractive and one repulsive, of identical oscillators with a frequency difference, an interesting solitary state appears directly between full and partial synchrony. This system can be described very well analytically.}, language = {en} } @phdthesis{Zheng2021, author = {Zheng, Chunming}, title = {Bursting and synchronization in noisy oscillatory systems}, doi = {10.25932/publishup-50019}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-500199}, school = {Universit{\"a}t Potsdam}, pages = {iv, 87}, year = {2021}, abstract = {Noise is ubiquitous in nature and usually results in rich dynamics in stochastic systems such as oscillatory systems, which exist in such various fields as physics, biology and complex networks. The correlation and synchronization of two or many oscillators are widely studied topics in recent years. In this thesis, we mainly investigate two problems, i.e., the stochastic bursting phenomenon in noisy excitable systems and synchronization in a three-dimensional Kuramoto model with noise. Stochastic bursting here refers to a sequence of coherent spike train, where each spike has random number of followers due to the combined effects of both time delay and noise. Synchronization, as a universal phenomenon in nonlinear dynamical systems, is well illustrated in the Kuramoto model, a prominent model in the description of collective motion. In the first part of this thesis, an idealized point process, valid if the characteristic timescales in the problem are well separated, is used to describe statistical properties such as the power spectral density and the interspike interval distribution. We show how the main parameters of the point process, the spontaneous excitation rate, and the probability to induce a spike during the delay action can be calculated from the solutions of a stationary and a forced Fokker-Planck equation. We extend it to the delay-coupled case and derive analytically the statistics of the spikes in each neuron, the pairwise correlations between any two neurons, and the spectrum of the total output from the network. In the second part, we investigate the three-dimensional noisy Kuramoto model, which can be used to describe the synchronization in a swarming model with helical trajectory. In the case without natural frequency, the Kuramoto model can be connected with the Vicsek model, which is widely studied in collective motion and swarming of active matter. We analyze the linear stability of the incoherent state and derive the critical coupling strength above which the incoherent state loses stability. In the limit of no natural frequency, an exact self-consistent equation of the mean field is derived and extended straightforward to any high-dimensional case.}, language = {en} }