@article{KruegerGengeDietzeYanetal.2018, author = {Kr{\"u}ger-Genge, Anne and Dietze, Stefanie and Yan, Wan and Liu, Yue and Fang, Liang and Kratz, Karl and Lendlein, Andreas and Jung, Friedrich}, title = {Endothelial cell migration, adhesion and proliferation on different polymeric substrates}, series = {Clinical hemorheology and microcirculation : blood flow and vessels}, volume = {70}, journal = {Clinical hemorheology and microcirculation : blood flow and vessels}, number = {4}, publisher = {IOS Press}, address = {Amsterdam}, issn = {1386-0291}, doi = {10.3233/CH-189317}, pages = {511 -- 529}, year = {2018}, abstract = {BACKGROUND: The formation of a functionally-confluent endothelial cell (EC) monolayer affords proliferation of EC, which only happens in case of appropriate migratory activity. AIM OF THE STUDY: The migratory pathway of human umbilical endothelial cells (HUVEC) was investigated on different polymeric substrates. MATERIAL AND METHODS: Surface characterization of the polymers was performed by contact angle measurements and atomic force microscopy under wet conditions. 30,000 HUVEC per well were seeded on polytetrafluoroethylene (PTFE) (theta(adv) = 119 degrees +/- 2 degrees), on low-attachment plate LAP (theta(adv) = 28 degrees +/- 2 degrees) and on polystyrene based tissue culture plates (TCP, theta(adv) = 22 degrees +/- 1 degrees). HUVEC tracks (trajectories) were recorded by time lapse microscopy and the euclidean distance (straight line between starting and end point), the total distance and the velocities of HUVEC not leaving the vision field were determined. RESULTS: On PTFE, 42 HUVEC were in the vision field directly after seeding. The mean length of single migration steps (SML) was 6.1 +/- 5.2 mu m, the mean velocity (MV) 0.40 +/- 0.3 mu m.min(-1) and the complete length of the trajectory (LT) was 710 +/- 440 mu m. On TCP 82 HUVEC were in the vision field subsequent to seeding. The LT was 840 +/- 550 mu m, the SML 6.1 +/- 5.2 mu m and the MV 0.44 +/- 0.3 mu m.min(-1). The trajectories on LAP differed significantly in respect to SML (2.4 +/- 3.9 mu m, p <0.05), the MV (0.16 +/- 0.3 mu m.min(-1), p <0.05) and the LT (410 +/- 300 mu m, p <0.05), compared to PTFE and TCP. Solely on TCP a nearly confluent EC monolayer developed after three days. While on TCP diffuse signals of vinculin were found over the whole basal cell surface organizing the binding of the cells by focal adhesions, on PTFE vinculin was merely arranged at the cell rims, and on the hydrophilic material (LAP) no focal adhesions were found. CONCLUSION: The study revealed that the wettability of polymers affected not only the initial adherence but also the migration of EC, which is of importance for the proliferation and ultimately the endothelialization of polymer-based biomaterials.}, language = {en} } @article{LaurenzanaCencettiSerratietal.2015, author = {Laurenzana, Anna and Cencetti, Francesca and Serrati, Simona and Bruno, Gennaro and Japtok, Lukasz and Bianchini, Francesca and Torre, Eugenio and Fibbi, Gabriella and Del Rosso, Mario and Bruni, Paola and Donati, Chiara}, title = {Endothelial sphingosine kinase/SPNS2 axis is critical for vessel-like formation by human mesoangioblasts}, series = {Journal of molecular medicine}, volume = {93}, journal = {Journal of molecular medicine}, number = {10}, publisher = {Springer}, address = {New York}, issn = {0946-2716}, doi = {10.1007/s00109-015-1292-0}, pages = {1145 -- 1157}, year = {2015}, abstract = {The interaction between endothelial cells and pericytes is crucial for the stabilization of newly formed vessels in angiogenesis. The comprehension of the mechanisms regulating peiicyte recruitment might open therapeutical perspectives on vascular-related pathologies. Sphingosine 1phosphate (SIP) is a bioactive sphingolipid that derives from sphingomyelin catabolism and regulates biological functions in cell survival, proliferation, and differentiation. In this study, we aimed to identify the role of SIP axis in the intercellular communication between human mesenchymal progenitor mesoangioblasts (MAB) and endothelial cells (human microvascular endothelial cells (HMVEC)) in the formation of capillary-like structures. We demonstrated that the SIP biosynthetic pathway brought about by sphingosine kinases (SK) SKI and SK2 as well as spinster homolog 2 (SPNS2) transporter in H-MVEC is crucial for MAB migration measured by Boyden chambers and for the formation and stabilization of capillary-like structures in a 3D Matrigel culture. Moreover, the conditioned medium (CM) harvested from HMVEC, where SKI, 5K2, and SPNS2 were down-regulated, exerted a significantly diminished effect on MAB capillary morphogenesis and migration. Notably, we demonstrated that S I Pi and Si p3 receptors were positively involved in CM-induced capillary-like formation and migration, while S I P2 exerted a negative role on CM-induced migratory action of MAB. Finally, SK inhibition as well as MAB SlPi and S1P3 down-regulation impaired HMVEC-MAB cross-talk significantly reducing in vivo angiogenesis evaluated by Matrigel plug assay. These findings individuate novel targets for the employment of MAB in vascular-related pathologic conditions.}, language = {en} } @article{ImeriFalleggerZivkovicetal.2014, author = {Imeri, Faik and Fallegger, Daniel and Zivkovic, Aleksandra and Schwalm, Stephanie and Enzmann, Gaby and Blankenbach, Kira and Heringdorf, Dagmar Meyer Zu and Homann, Thomas and Kleuser, Burkhard and Pfeilschifter, Josef and Engelhardt, Britta and Stark, Holger and Huwiler, Andrea}, title = {Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice}, series = {Neuropharmacology}, volume = {85}, journal = {Neuropharmacology}, publisher = {Elsevier}, address = {Oxford}, issn = {0028-3908}, doi = {10.1016/j.neuropharm.2014.05.012}, pages = {314 -- 327}, year = {2014}, abstract = {The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P(1) and S1P(3), but not S1P(2), receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNF alpha-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNF alpha-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }