@article{NitzeGrosse2016, author = {Nitze, Ingmar and Grosse, Guido}, title = {Detection of landscape dynamics in the Arctic Lena Delta with temporally dense Landsat time-series stacks}, series = {Remote sensing of environment : an interdisciplinary journal}, volume = {181}, journal = {Remote sensing of environment : an interdisciplinary journal}, publisher = {Elsevier}, address = {New York}, issn = {0034-4257}, doi = {10.1016/j.rse.2016.03.038}, pages = {27 -- 41}, year = {2016}, abstract = {Arctic permafrost landscapes are among the most vulnerable and dynamic landscapes globally, but due to their extent and remoteness most of the landscape changes remain unnoticed. In order to detect disturbances in these areas we developed an automated processing chain for the calculation and analysis of robust trends of key land surface indicators based on the full record of available Landsat TM, ETM +, and OLI data. The methodology was applied to the similar to 29,000 km(2) Lena Delta in Northeast Siberia, where robust trend parameters (slope, confidence intervals of the slope, and intercept) were calculated for Tasseled Cap Greenness, Wetness and Brightness, NDVI, and NDWI, and NDMI based on 204 Landsat scenes for the observation period between 1999 and 2014. The resulting datasets revealed regional greening trends within the Lena Delta with several localized hot-spots of change, particularly in the vicinity of the main river channels. With a 30-m spatial resolution various permafrost-thaw related processes and disturbances, such as thermokarst lake expansion and drainage, fluvial erosion, and coastal changes were detected within the Lena Delta region, many of which have not been noticed or described before. Such hotspots of permafrost change exhibit significantly different trend parameters compared to non-disturbed areas. The processed dataset, which is made freely available through the data archive PANGAEA, will be a useful resource for further process specific analysis by researchers and land managers. With the high level of automation and the use of the freely available Landsat archive data, the workflow is scalable and transferrable to other regions, which should enable the comparison of land surface changes in different permafrost affected regions and help to understand and quantify permafrost landscape dynamics. (C) 2016 Elsevier Inc. All rights reserved.}, language = {en} } @article{MoradiFakheranPeintingeretal.2012, author = {Moradi, H. and Fakheran, S. and Peintinger, M. and Bergamini, A. and Schmid, B. and Joshi, Jasmin Radha}, title = {Profiteers of environmental change in the Swiss Alps increase of thermophilous and generalist plants in wetland ecosystems within the last 10 years}, series = {Alpine botany}, volume = {122}, journal = {Alpine botany}, number = {1}, publisher = {Springer}, address = {Basel}, issn = {1664-2201}, doi = {10.1007/s00035-012-0102-3}, pages = {45 -- 56}, year = {2012}, abstract = {It has been predicted that Europe will experience a rise in temperature of 2.2-5.3 A degrees C within this century. This increase in temperature may lead to vegetation change along altitudinal gradients. To test whether vegetation composition has already changed in the recent decade due to current warming (and other concomitant environmental changes), we recorded plant species composition in 1995 and 2005/2006 in Swiss pre-alpine fen meadows (800-1,400 m a.s.l.). Despite no obvious changes in the management of these fens, overall, plant species richness (cumulative number of plant species at five plots per site) significantly increased over this period. This was mainly due to an increase in the number of thermophilous, rich-soil-indicator and shade-indicator species, which corresponded to increased community productivity and shading within the vegetation layer. In contrast, fen specialists significantly declined in species numbers. The strongest species shifts occurred at the lowest sites, which overall had a higher colonization rate by new species than did sites at higher altitudes. Vegetation change along the altitudinal gradient was also affected by different types of land management: early-flowering species and species with low habitat specificity had high colonization rates in grazed fens, especially at low altitudes.}, language = {en} } @article{TianHerzschuhDallmeyeretal.2013, author = {Tian, Fang and Herzschuh, Ulrike and Dallmeyer, Anne and Xu, Qinghai and Mischke, Steffen and Biskaborn, Boris K.}, title = {Environmental variability in the monsoon-westerlies transition zone during the last 1200 years - lake sediment analyses from central Mongolia and supra-regional synthesis}, series = {Quaternary science reviews : the international multidisciplinary research and review journal}, volume = {73}, journal = {Quaternary science reviews : the international multidisciplinary research and review journal}, number = {2}, publisher = {Elsevier}, address = {Oxford}, issn = {0277-3791}, doi = {10.1016/j.quascirev.2013.05.005}, pages = {31 -- 47}, year = {2013}, abstract = {A high resolution multi proxy (pollen, grain size, total organic carbon) record from a small mountain lake (Lake Khuisiin; 46.6 degrees N, 101.8 degrees E; 2270 m a.s.l.) in the south eastern Khangai Mountains of central Mongolia has been used to explore changes in vegetation and climate over the last 1200 years. The pollen data indicates that the vegetation changed from dry steppe dominated by Poaceae and Artemisia (ca AD 760-950), to Larix forest steppe (ca AD 950-1170), Larix Betula forest steppe (ca AD 1170-1380), meadow dominated by Cyperaceae and Poaceae (ca AD 1380-1830), and Larix Betula forest steppe (after similar to AD 1830). The cold-wet period between AD 1380 and 1830 may relate to the Little Ice Age. Environmental changes were generally subtle and climate change seems to have been the major driver of variations in vegetation until at least the early part of the 20th century, suggesting that either the level of human activity was generally low, or the relationship between human activity and vegetation did not alter substantially between AD 760 and 1830. A review of centennial scale moisture records from China and Mongolia revealed that most areas experienced major changes at ca AD 1500 and AD 1900. However, the moisture availability since AD 1500 varied between sites, with no clear regional pattern or relationship to present day conditions. Both the reconstructions and the moisture levels simulation on a millennium scale performed in the MPI Earth System Model indicate that the monsoon-westerlies transition area shows a greater climate variability than those areas influenced by the westerlies, or by the summer monsoon only.}, language = {en} }