@article{KhajooeiWochatzBaritelloetal.2020, author = {Khajooei, Mina and Wochatz, Monique and Baritello, Omar and Mayer, Frank}, title = {Effects of shoes on children's fundamental motor skills performance}, series = {Footwear science : official journal of the Footwear Biomechanics Group}, volume = {12}, journal = {Footwear science : official journal of the Footwear Biomechanics Group}, number = {1}, publisher = {Taylor \& Francis}, address = {Abingdon}, issn = {1942-4280}, doi = {10.1080/19424280.2019.1696895}, pages = {55 -- 62}, year = {2020}, abstract = {Progression or impediment of fundamental motor skills performance (FMSP) in children depends on internal and environmental factors. Shoes as an environmental constraint are believed to affect these movements as children showed to perform qualitatively better with sports shoes than flip-flop sandals. However, locomotor performance assessments based on biomechanical variables are limited. Therefore, the objective of this experiment was to assess the biomechanical effects of wearing shoes while performing fundamental motor skills in children. Barefoot and shod conditions were tested in healthy children between the age of 4 and 7 years. They were asked to perform basic and advanced motor skills including double-leg stance, horizontal jumps, walking as well as counter-movement jumps, single-leg stance and sprinting. Postural control and ground reaction data were measured with two embedded force plates. A 3D motion capture system was used to analyse the spatiotemporal parameters of walking and sprinting. Findings showed that the parameters of single- and double-leg stance, horizontal and counter-movement jump did not differ between barefoot and shod conditions. Most of the spatiotemporal variables including cadence, stride length, stride time, and contact time of walking and sprinting were statistically different between the barefoot and shod conditions. Consequently, tested shoes did not change performance and biomechanics of postural control and jumping tasks; however, the spatiotemporal gait parameters indicate changes in walking and sprinting characteristics with shoes in children.}, language = {en} } @article{RamirezCampilloAlvarezGarciaPinillosetal.2018, author = {Ramirez-Campillo, Rodrigo and Alvarez, Cristian and Garcia-Pinillos, Felipe and Sanchez-Sanchez, Javier and Yanci, Javier and Castillo, Daniel and Loturco, Irineu and Chaabene, Helmi and Moran, Jason and Izquierdo, Mikel}, title = {Optimal reactive strength index}, series = {Journal of strength and conditioning research : the research journal of the NSCA}, volume = {32}, journal = {Journal of strength and conditioning research : the research journal of the NSCA}, number = {4}, publisher = {Lippincott Williams \& Wilkins}, address = {Philadelphia}, issn = {1064-8011}, doi = {10.1519/JSC.0000000000002467}, pages = {885 -- 893}, year = {2018}, abstract = {Ramirez-Campillo, R, Alvarez, C, Garc{\´i}a-Pinillos, F, Sanchez-Sanchez, J, Yanci, J, Castillo, D, Loturco, I, Chaabene, H, Moran, J, and Izquierdo, M. Optimal reactive strength index: is it an accurate variable to optimize plyometric training effects on measures of physical fitness in young soccer players? J Strength Cond Res 32(4): 885-893, 2018—This study aimed to compare the effects of drop-jump training using a fixed drop-box height (i.e., 30-cm [FIXED]) vs. an optimal (OPT) drop-box height (i.e., 10-cm to 40-cm: generating an OPT reactive strength index [RSI]) in youth soccer players' physical fitness. Athletes were randomly allocated to a control group (n = 24; age = 13.7 years), a fixed drop-box height group (FIXED, n = 25; age = 13.9 years), or an OPT drop-box height group (OPT, n = 24; age = 13.1 years). Before and after 7 weeks of training, tests for the assessment of jumping (countermovement jump [CMJ], 5 multiple bounds), speed (20-m sprint time), change of direction ability (CODA [Illinois test]), strength {RSI and 5 maximal squat repetition test (5 repetition maximum [RM])}, endurance (2.4-km time trial), and kicking ability (maximal kicking distance) were undertaken. Analyses revealed main effects of time for all dependent variables (p < 0.001, d = 0.24-0.72), except for 20-m sprint time. Analyses also revealed group × time interactions for CMJ (p < 0.001, d = 0.51), depth jump (DJ) (p < 0.001, d = 0.30), 20-m sprint time (p < 0.001, d = 0.25), CODA (p < 0.001, d = 0.22), and 5RM (p < 0.01, d = 0.16). Post hoc analyses revealed increases for the FIXED group (CMJ: 7.4\%, d = 0.36; DJ: 19.2\%, d = 0.49; CODA: -3.1\%, d = -0.21; 5RM: 10.5\%, d = 0.32) and the OPT group (CMJ: 16.7\%, d = 0.76; DJ: 36.1\%, d = 0.79; CODA: -4.4\%, d = -0.34; 5RM: 18.1\%, d = 0.47). Post hoc analyses also revealed increases for the OPT group in 20-m sprint time (-3.7\%, d = 0.27). Therefore, to maximize the effects of plyometric training, an OPT approach is recommended. However, using adequate fixed drop-box heights may provide a rational and practical alternative.}, language = {en} } @article{PrieskeMuehlbauerBordeetal.2016, author = {Prieske, Olaf and M{\"u}hlbauer, Thomas and Borde, Ron and Gube, M. and Bruhn, S. and Behm, David George and Granacher, Urs}, title = {Neuromuscular and athletic performance following core strength training in elite youth soccer: Role of instability}, series = {Learning and individual differences}, volume = {26}, journal = {Learning and individual differences}, publisher = {Wiley-Blackwell}, address = {Hoboken}, issn = {0905-7188}, doi = {10.1111/sms.12403}, pages = {48 -- 56}, year = {2016}, abstract = {Cross-sectional studies revealed that inclusion of unstable elements in core-strengthening exercises produced increases in trunk muscle activity and thus potential extra stimuli to induce more pronounced performance enhancements in youth athletes. Thus, the purpose of the study was to investigate changes in neuromuscular and athletic performance following core strength training performed on unstable (CSTU) compared with stable surfaces (CSTS) in youth soccer players. Thirty-nine male elite soccer players (age: 17 +/- 1 years) were assigned to two groups performing a progressive core strength-training program for 9 weeks (2-3 times/week) in addition to regular in-season soccer training. CSTS group conducted core exercises on stable (i.e., floor, bench) and CSTU group on unstable (e.g., Thera-Band (R) Stability Trainer, Togu (c) Swiss ball) surfaces. Measurements included tests for assessing trunk muscle strength/activation, countermovement jump height, sprint time, agility time, and kicking performance. Statistical analysis revealed significant main effects of test (pre vs post) for trunk extensor strength (5\%, P<0.05, d=0.86), 10-20-m sprint time (3\%, P<0.05, d=2.56), and kicking performance (1\%, P<0.01, d=1.28). No significant Groupxtest interactions were observed for any variable. In conclusion, trunk muscle strength, sprint, and kicking performance improved following CSTU and CSTS when conducted in combination with regular soccer training.}, language = {en} } @article{ZghalColsonBlainetal.2019, author = {Zghal, Firas and Colson, Serge S. and Blain, Gr{\´e}gory and Behm, David George and Granacher, Urs and Chaouachi, Anis}, title = {Combined Resistance and Plyometric Training Is More Effective Than Plyometric Training Alone for Improving Physical Fitness of Pubertal Soccer Players}, series = {frontiers in Physiology}, volume = {10}, journal = {frontiers in Physiology}, number = {August 2019}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2019.01026}, pages = {11}, year = {2019}, abstract = {The purpose of this study was to compare the effects of combined resistance and plyometric/sprint training with plyometric/sprint training or typical soccer training alone on muscle strength and power, speed, change-of-direction ability in young soccer players. Thirty-one young (14.5 ± 0.52 years; tanner stage 3-4) soccer players were randomly assigned to either a combined- (COMB, n = 14), plyometric-training (PLYO, n = 9) or an active control group (CONT, n = 8). Two training sessions were added to the regular soccer training consisting of one session of light-load high-velocity resistance exercises combined with one session of plyometric/sprint training (COMB), two sessions of plyometric/sprint training (PLYO) or two soccer training sessions (CONT). Training volume was similar between the experimental groups. Before and after 7-weeks of training, peak torque, as well as absolute and relative (normalized to torque; RTDr) rate of torque development (RTD) during maximal voluntary isometric contraction of the knee extensors (KE) were monitored at time intervals from the onset of contraction to 200 ms. Jump height, sprinting speed at 5, 10, 20-m and change-of-direction ability performances were also assessed. There were no significant between-group baseline differences. Both COMB and PLYO significantly increased their jump height (Δ14.3\%; ES = 0.94; Δ12.1\%; ES = 0.54, respectively) and RTD at mid to late phases but with greater within effect sizes in COMB in comparison with PLYO. However, significant increases in peak torque (Δ16.9\%; p < 0.001; ES = 0.58), RTD (Δ44.3\%; ES = 0.71), RTDr (Δ27.3\%; ES = 0.62) and sprint performance at 5-m (Δ-4.7\%; p < 0.001; ES = 0.73) were found in COMB without any significant pre-to-post change in PLYO and CONT groups. Our results suggest that COMB is more effective than PLYO or CONT for enhancing strength, sprint and jump performances.}, language = {en} } @misc{ZghalColsonBlainetal.2019, author = {Zghal, Firas and Colson, Serge S. and Blain, Gr{\´e}gory and Behm, David George and Granacher, Urs and Chaouachi, Anis}, title = {Combined Resistance and Plyometric Training Is More Effective Than Plyometric Training Alone for Improving Physical Fitness of Pubertal Soccer Players}, series = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam Humanwissenschaftliche Reihe}, number = {576}, issn = {1866-8364}, doi = {10.25932/publishup-43781}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-437810}, pages = {12}, year = {2019}, abstract = {The purpose of this study was to compare the effects of combined resistance and plyometric/sprint training with plyometric/sprint training or typical soccer training alone on muscle strength and power, speed, change-of-direction ability in young soccer players. Thirty-one young (14.5 ± 0.52 years; tanner stage 3-4) soccer players were randomly assigned to either a combined- (COMB, n = 14), plyometric-training (PLYO, n = 9) or an active control group (CONT, n = 8). Two training sessions were added to the regular soccer training consisting of one session of light-load high-velocity resistance exercises combined with one session of plyometric/sprint training (COMB), two sessions of plyometric/sprint training (PLYO) or two soccer training sessions (CONT). Training volume was similar between the experimental groups. Before and after 7-weeks of training, peak torque, as well as absolute and relative (normalized to torque; RTDr) rate of torque development (RTD) during maximal voluntary isometric contraction of the knee extensors (KE) were monitored at time intervals from the onset of contraction to 200 ms. Jump height, sprinting speed at 5, 10, 20-m and change-of-direction ability performances were also assessed. There were no significant between-group baseline differences. Both COMB and PLYO significantly increased their jump height (Δ14.3\%; ES = 0.94; Δ12.1\%; ES = 0.54, respectively) and RTD at mid to late phases but with greater within effect sizes in COMB in comparison with PLYO. However, significant increases in peak torque (Δ16.9\%; p < 0.001; ES = 0.58), RTD (Δ44.3\%; ES = 0.71), RTDr (Δ27.3\%; ES = 0.62) and sprint performance at 5-m (Δ-4.7\%; p < 0.001; ES = 0.73) were found in COMB without any significant pre-to-post change in PLYO and CONT groups. Our results suggest that COMB is more effective than PLYO or CONT for enhancing strength, sprint and jump performances.}, language = {en} } @article{PrieskeKruegerAehleetal.2018, author = {Prieske, Olaf and Kr{\"u}ger, Tom and Aehle, Markus and Bauer, Erik and Granacher, Urs}, title = {Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults}, series = {Frontiers in Physiology}, volume = {9}, journal = {Frontiers in Physiology}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-042X}, doi = {10.3389/fphys.2018.00156}, pages = {1 -- 10}, year = {2018}, abstract = {Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45-60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40\% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5\% for RST [90\%CI: (-1.1\%;10.1\%), d = 1.23] and 2.6\% for TPT [90\%CI: (0.4\%;4.8\%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to -6.3\% for RST [90\%CI: (-11.4\%;-1.1\%), d = 1.45) and -2.7\% for TPT [90\%CI: (-4.2\%;-1.2\%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.}, language = {en} } @misc{PrieskeKruegerAehleetal.2018, author = {Prieske, Olaf and Kr{\"u}ger, Tom and Aehle, Markus and Bauer, Erik and Granacher, Urs}, title = {Effects of Resisted Sprint Training and Traditional Power Training on Sprint, Jump, and Balance Performance in Healthy Young Adults}, series = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Humanwissenschaftliche Reihe}, number = {383}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-409645}, pages = {10}, year = {2018}, abstract = {Power training programs have proved to be effective in improving components of physical fitness such as speed. According to the concept of training specificity, it was postulated that exercises must attempt to closely mimic the demands of the respective activity. When transferring this idea to speed development, the purpose of the present study was to examine the effects of resisted sprint (RST) vs. traditional power training (TPT) on physical fitness in healthy young adults. Thirty-five healthy, physically active adults were randomly assigned to a RST (n = 10, 23 ± 3 years), a TPT (n = 9, 23 ± 3 years), or a passive control group (n = 16, 23 ± 2 years). RST and TPT exercised for 6 weeks with three training sessions/week each lasting 45-60 min. RST comprised frontal and lateral sprint exercises using an expander system with increasing levels of resistance that was attached to a treadmill (h/p/cosmos). TPT included ballistic strength training at 40\% of the one-repetition-maximum for the lower limbs (e.g., leg press, knee extensions). Before and after training, sprint (20-m sprint), change-of-direction speed (T-agility test), jump (drop, countermovement jump), and balance performances (Y balance test) were assessed. ANCOVA statistics revealed large main effects of group for 20-m sprint velocity and ground contact time (0.81 ≤ d ≤ 1.00). Post-hoc tests showed higher sprint velocity following RST and TPT (0.69 ≤ d ≤ 0.82) when compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to 4.5\% for RST [90\%CI: (-1.1\%;10.1\%), d = 1.23] and 2.6\% for TPT [90\%CI: (0.4\%;4.8\%), d = 1.59]. Additionally, ground contact times during sprinting were shorter following RST and TPT (0.68 ≤ d ≤ 1.09) compared to the control group, but no difference between RST and TPT. Pre-to-post changes amounted to -6.3\% for RST [90\%CI: (-11.4\%;-1.1\%), d = 1.45) and -2.7\% for TPT [90\%CI: (-4.2\%;-1.2\%), d = 2.36]. Finally, effects for change-of-direction speed, jump, and balance performance varied from small-to-large. The present findings indicate that 6 weeks of RST and TPT produced similar effects on 20-m sprint performance compared with a passive control in healthy and physically active, young adults. However, no training-related effects were found for change-of-direction speed, jump and balance performance. We conclude that both training regimes can be applied for speed development.}, language = {en} }