@phdthesis{Hunke2015, author = {Hunke, Philip Paul}, title = {The Brazilian Cerrado: ecohydrological assessment of water and soil degradation in heavily modified meso-scale catchments}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-85110}, school = {Universit{\"a}t Potsdam}, pages = {xi, 124}, year = {2015}, abstract = {The Brazilian Cerrado is recognised as one of the most threatened biomes in the world, as the region has experienced a striking change from natural vegetation to intense cash crop production. The impacts of rapid agricultural expansion on soil and water resources are still poorly understood in the region. Therefore, the overall aim of the thesis is to improve our understanding of the ecohydrological processes causing water and soil degradation in the Brazilian Cerrado. I first present a metaanalysis to provide quantitative evidence and identifying the main impacts of soil and water alterations resulting from land use change. Second, field studies were conducted to (i) examine the effects of land use change on soils of natural cerrado transformed to common croplands and pasture and (ii) indicate how agricultural production affects water quality across a meso-scale catchment. Third, the ecohydrological process-based model SWAT was tested with simple scenario analyses to gain insight into the impacts of land use and climate change on the water cycling in the upper S{\~a}o Louren{\c{c}}o catchment which experienced decreasing discharges in the last 40 years. Soil and water quality parameters from different land uses were extracted from 89 soil and 18 water studies in different regions across the Cerrado. Significant effects on pH, bulk density and available P and K for croplands and less-pronounced effects on pastures were evident. Soil total N did not differ between land uses because most of the cropland sites were N-fixing soybean cultivations, which are not artificially fertilized with N. By contrast, water quality studies showed N enrichment in agricultural catchments, indicating fertilizer impacts and potential susceptibility to eutrophication. Regardless of the land use, P is widely absent because of the high-fixing capacities of deeply weathered soils and the filtering capacity of riparian vegetation. Pesticides, however, were consistently detected throughout the entire aquatic system. In several case studies, extremely high-peak concentrations exceeded Brazilian and EU water quality limits, which pose serious health risks. My field study revealed that land conversion caused a significant reduction in infiltration rates near the soil surface of pasture (-96 \%) and croplands (-90 \% to -93 \%). Soil aggregate stability was significantly reduced in croplands than in cerrado and pasture. Soybean crops had extremely high extractable P (80 mg kg-1), whereas pasture N levels declined. A snapshot water sampling showed strong seasonality in water quality parameters. Higher temperature, oxi-reduction potential (ORP), NO2-, and very low oxygen concentrations (<5 mg•l-1) and saturation (<60 \%) were recorded during the rainy season. By contrast, remarkably high PO43- concentrations (up to 0.8 mg•l-1) were measured during the dry season. Water quality parameters were affected by agricultural activities at all sampled sub-catchments across the catchment, regardless of stream characteristic. Direct NO3- leaching appeared to play a minor role; however, water quality is affected by topsoil fertiliser inputs with impact on small low order streams and larger rivers. Land conversion leaving cropland soils more susceptible to surface erosion by increased overland flow events. In a third study, the field data were used to parameterise SWAT. The model was tested with different input data and calibrated in SWAT-CUP using the SUFI-2 algorithm. The model was judged reliable to simulate the water balance in the Cerrado. A complete cerrado, pasture and cropland cover was used to analyse the impact of land use on water cycling as well as climate change projections (2039-2058) according to the projections of the RCP 8.5 scenario. The actual evapotranspiration (ET) for the cropland scenario was higher compared to the cerrado cover (+100 mm a-1). Land use change scenarios confirmed that deforestation caused higher annual ET rates explaining partly the trend of decreased streamflow. Taking all climate change scenarios into account, the most likely effect is a prolongation of the dry season (by about one month), with higher peak flows in the rainy season. Consequently, potential threats for crop production with lower soil moisture and increased erosion and sediment transport during the rainy season are likely and should be considered in adaption plans. From the three studies of the thesis I conclude that land use intensification is likely to seriously limit the Cerrado's future regarding both agricultural productivity and ecosystem stability. Because only limited data are available for the vast biome, we recommend further field studies to understand the interaction between terrestrial and aquatic systems. This thesis may serve as a valuable database for integrated modelling to investigate the impact of land use and climate change on soil and water resources and to test and develop mitigation measures for the Cerrado in the future.}, language = {en} } @phdthesis{Post2006, author = {Post, Joachim}, title = {Integrated process-based simulation of soil carbon dynamics in river basins under present, recent past and future environmental conditions}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-11507}, school = {Universit{\"a}t Potsdam}, year = {2006}, abstract = {Soils contain a large amount of carbon (C) that is a critical regulator of the global C budget. Already small changes in the processes governing soil C cycling have the potential to release considerable amounts of CO2, a greenhouse gas (GHG), adding additional radiative forcing to the atmosphere and hence to changing climate. Increased temperatures will probably create a feedback, causing soils to release more GHGs. Furthermore changes in soil C balance impact soil fertility and soil quality, potentially degrading soils and reducing soils function as important resource. Consequently the assessment of soil C dynamics under present, recent past and future environmental conditions is not only of scientific interest and requires an integrated consideration of main factors and processes governing soil C dynamics. To perform this assessment an eco-hydrological modelling tool was used and extended by a process-based description of coupled soil carbon and nitrogen turnover. The extended model aims at delivering sound information on soil C storage changes beside changes in water quality, quantity and vegetation growth under global change impacts in meso- to macro-scale river basins, exemplary demonstrated for a Central European river basin (the Elbe). As a result this study: ▪ Provides information on joint effects of land-use (land cover and land management) and climate changes on croplands soil C balance in the Elbe river basin (Central Europe) presently and in the future. ▪ Evaluates which processes, and at what level of process detail, have to be considered to perform an integrated simulation of soil C dynamics at the meso- to macro-scale and demonstrates the model's capability to simulate these processes compared to observations. ▪ Proposes a process description relating soil C pools and turnover properties to readily measurable quantities. This reduces the number of model parameters, enhances the comparability of model results to observations, and delivers same performance simulating long-term soil C dynamics as other models. ▪ Presents an extensive assessment of the parameter and input data uncertainty and their importance both temporally and spatially on modelling soil C dynamics. For the basin scale assessments it is estimated that croplands in the Elbe basin currently act as a net source of carbon (net annual C flux of 11 g C m-2 yr-1, 1.57 106 tons CO2 yr-1 entire croplands on average). Although this highly depends on the amount of harvest by-products remaining on the field. Future anticipated climate change and observed climate change in the basin already accelerates soil C loss and increases source strengths (additional 3.2 g C m-2 yr-1, 0.48 106 tons CO2 yr-1 entire croplands). But anticipated changes of agro-economic conditions, translating to altered crop share distributions, display stronger effects on soil C storage than climate change. Depending on future use of land expected to fall out of agricultural use in the future (~ 30 \% of croplands area as "surplus" land), the basin either considerably looses soil C and the net annual C flux to the atmosphere increases (surplus used as black fallow) or the basin converts to a net sink of C (sequestering 0.44 106 tons CO2 yr-1 under extensified use as ley-arable) or reacts with decrease in source strength when using bioenergy crops. Bioenergy crops additionally offer a considerable potential for fossil fuel substitution (~37 PJ, 1015 J per year), whereas the basin wide use of harvest by-products for energy generation has to be seen critically although offering an annual energy potential of approximately 125 PJ. Harvest by-products play a central role in soil C reproduction and a percentage between 50 and 80 \% should remain on the fields in order to maintain soil quality and fertility. The established modelling tool allows quantifying climate, land use and major land management impacts on soil C balance. New is that the SOM turnover description is embedded in an eco-hydrological river basin model, allowing an integrated consideration of water quantity, water quality, vegetation growth, agricultural productivity and soil carbon changes under different environmental conditions. The methodology and assessment presented here demonstrates the potential for integrated assessment of soil C dynamics alongside with other ecosystem services under global change impacts and provides information on the potentials of soils for climate change mitigation (soil C sequestration) and on their soil fertility status.}, subject = {Kohlenstoff}, language = {en} } @phdthesis{Krause2005, author = {Krause, Stefan}, title = {Untersuchung und Modellierung von Wasserhaushalt und Stofftransportprozessen in grundwassergepr{\"a}gten Landschaften am Beispiel der Unteren Havel}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus-3487}, school = {Universit{\"a}t Potsdam}, year = {2005}, abstract = {Das Ziel dieser Arbeit ist die Untersuchung der Wasserhaushaltsprozesse und Stofftransportvorg{\"a}nge innerhalb der grundwassergepr{\"a}gten Talauenlandschaften von Tieflandeinzugsgebieten am Beispiel der im Nordostdeutschen Tiefland gelegenen Havel. Die Arbeiten in verschieden skaligen Teileinzugsgebieten der Havel besch{\"a}ftigen sich dabei zum einen mit der experimentellen Untersuchung und vorrangig qualitativen Beschreibung der Wasserhaushaltsdynamik, zum anderen mit der Entwicklung eines zur quantitativen Analyse von Wasserhaushalts- und Stofftransportprozessen geeigneten Modells und der anschließenden Modellsimulation von Wasserhaushalt und Stickstoffmetabolik im Grundwasser sowie der Simulation von Landnutzungs- und Gew{\"a}sserstrukturszenarien. F{\"u}r die experimentelle Untersuchung der Abflussbildung und der Wasserhaushaltsprozesse in den Talauenlandschaften des Haveleinzugsgebiets wurde Einzugsgebiet der \&\#8221;Unteren Havel Niederung\&\#8220; ein umfangreiches Messnetz installiert. Dabei wurden an mehreren Messstationen und Pegeln meteorologische Parameter, Bodenfeuchte sowie Grundwasserst{\"a}nde und Abfl{\"u}sse beobachtet. Die Analyse der Messergebnisse f{\"u}hrte zu einem verbesserten Verst{\"a}ndnis von Wasserhaushaltsprozessen in der durch das oberfl{\"a}chennahe Grundwasser und die Oberfl{\"a}chengew{\"a}sserdynamik beeinflussten Talauenzone. Dar{\"u}ber hinaus konnten durch die Implementierung der Messergebnisse konsistente Anfangs- und Randbedingungen f{\"u}r die Wasserhaushalts- und Grundwassermodellierung im Modellkonzept IWAN realisiert werden. Mit dem Modell IWAN (Integrated Modelling of Water Balance and Nutrient Dynamics) wurde ein Werkzeug geschaffen, welches die Ber{\"u}cksichtigung spezifischer hydrologischer Eigenschaften von Tieflandauen, wie z. B. den Einfluss des oberfl{\"a}chennahen Grundwassers bzw. der Dynamik von Oberfl{\"a}chenwasserst{\"a}nden auf den Wasserhaushalt, erm{\"o}glicht. Es basiert auf der Kopplung des deterministischen distribuierten hydrologischen Modells WASIM-ETH mit dem dreidimensionalen Finite-Differenzen-basierten Grundwassermodel MODFLOW. Die Modellierung der Stickstoffmetabolik im Grundwasser erfolgt durch das mit Grundwassermodell gekoppelte Stofftransportmodel MT3D. Zur modellbasierten Simulation des Wasserhaushalts der Tieflandauenlandschaften wurde das Modellkonzept IWAN f{\"u}r verschieden skalige Teileinzugsgebiete an der Havel f{\"u}r Simulationszeitr{\"a}ume von 2 Wochen bis zu 13 Jahren angewandt. Dabei wurden die Teilmodelle f{\"u}r Wasserhaushalts- und Grundwassermodellierung in zwei unterschiedlichen Teileinzugsgebieten der \&\#8221;Unteren Havel Niederung\&\#8220; kalibriert. Die anschließende Validierung erfolgte f{\"u}r das gesamte Einzugsgebiet der \&\#8221;Unteren Havel\&\#8220;. Die Unsicherheiten des Modellansatzes sowie die Anwendbarkeit des Modells im Untersuchungsraum wurden gepr{\"u}ft und die Limitierung der {\"U}bertragbarkeit auf andere grundwasserbeeinflusste Tieflandeinzugsgebiete analysiert. Die Ergebnisse der Wasserhaushaltssimulationen f{\"u}hren einerseits zum erweiterten Prozessverst{\"a}ndnis des Wasserhaushalts in Flachlandeinzugsgebieten, andererseits erm{\"o}glichten sie durch die Quantifizierung einzelner Prozessgr{\"o}ßen die Beurteilung der Steuerungsfunktion einzelner Wasserhaushaltsprozesse. Auf der Basis lokaler Simulationsergebnisse sowie geomorphologischer und gew{\"a}ssermorphologischer Analysen wurde ein Algorithmus entwickelt, welcher die Abgrenzung des direkten Eigeneinzugsgebiets der Havel als Raum der direkten Interaktion zwischen Oberfl{\"a}chengew{\"a}sser und umgebendem Einzugsgebiet beschreibt. Durch Simulation des Wasserhaushalts im Eigeneinzugsgebiet mit dem Modell IWAN konnten die Interaktionsprozesse zwischen Fluss und Talauenlandschaft quantitativ beschrieben werden. Dies erm{\"o}glichte eine Bewertung der Abflussanteile aus dem Eigeneinzugsgebiet sowie eine Quantifizierung der zeitlich variablen Retentionskapazit{\"a}t der Auenlandschaft w{\"a}hrend Hochwasserereignissen. Zur Absch{\"a}tzung des Einflusses ver{\"a}nderter Landnutzung und angepassten Managements auf den Wasserhaushalt der Talaue wurden Szenarien entwickelt, welche {\"A}nderungen der Landnutzung sowie der Gew{\"a}ssergeometrie implizieren. Die Simulation des Wasserhaushalts unter jeweiligen Szenariobedingungen erm{\"o}glichte die detaillierte Analyse sich {\"a}ndernder Randbedingungen auf den Gebietswasserhaushalt und auf die Austauschprozesse zwischen Grundwasser und Oberfl{\"a}chengew{\"a}sser. Zur Untersuchung der Stickstoffmetabolik im Grundwasser der Talauenlandschaft wurde das im Modellkonzept IWAN integrierte Stofftransportmodell MT3D f{\"u}r das Eigeneinzugsgebiet der Havel angewandt. Dies erm{\"o}glichte eine Bilanzierung der aus dem Grundwasser des Eigeneinzugsgebiets stammenden Nitratfrachtanteile der Havel sowie von Nitratkonzentrationen im Grundwasser. Szenariensimulationen, welche verminderte Nitrateintr{\"a}ge aus der durchwurzelten Bodenzone annehmen, erm{\"o}glichten die Quantifizierung der Effizienz von Managementmaßnahmen und Landnutzungs{\"a}nderungen in Hinblick auf die Minimierung von Eintr{\"a}gen in Grundwasser und Oberfl{\"a}chengew{\"a}sser.}, subject = {Grundwasser}, language = {de} }