@misc{MielkeRogassBoescheetal.2017, author = {Mielke, Christian and Rogass, Christian and Boesche, Nina and Segl, Karl and Altenberger, Uwe}, title = {EnGeoMAP 2.0}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-400650}, pages = {26}, year = {2017}, abstract = {Algorithms for a rapid analysis of hyperspectral data are becoming more and more important with planned next generation spaceborne hyperspectral missions such as the Environmental Mapping and Analysis Program (EnMAP) and the Japanese Hyperspectral Imager Suite (HISUI), together with an ever growing pool of hyperspectral airborne data. The here presented EnGeoMAP 2.0 algorithm is an automated system for material characterization from imaging spectroscopy data, which builds on the theoretical framework of the Tetracorder and MICA (Material Identification and Characterization Algorithm) of the United States Geological Survey and of EnGeoMAP 1.0 from 2013. EnGeoMAP 2.0 includes automated absorption feature extraction, spatio-spectral gradient calculation and mineral anomaly detection. The usage of EnGeoMAP 2.0 is demonstrated at the mineral deposit sites of Rodalquilar (SE-Spain) and Haib River (S-Namibia) using HyMAP and simulated EnMAP data. Results from Hyperion data are presented as supplementary information.}, language = {en} } @article{BrellSeglGuanteretal.2017, author = {Brell, Maximilian and Segl, Karl and Guanter, Luis and Bookhagen, Bodo}, title = {Hyperspectral and Lidar Intensity Data Fusion: A Framework for the Rigorous Correction of Illumination, Anisotropic Effects, and Cross Calibration}, series = {IEEE transactions on geoscience and remote sensing}, volume = {55}, journal = {IEEE transactions on geoscience and remote sensing}, publisher = {Inst. of Electr. and Electronics Engineers}, address = {Piscataway}, issn = {0196-2892}, doi = {10.1109/TGRS.2017.2654516}, pages = {2799 -- 2810}, year = {2017}, abstract = {The fusion of hyperspectral imaging (HSI) sensor and airborne lidar scanner (ALS) data provides promising potential for applications in environmental sciences. Standard fusion approaches use reflectance information from the HSI and distance measurements from the ALS to increase data dimen-sionality and geometric accuracy. However, the potential for data fusion based on the respective intensity information of the complementary active and passive sensor systems is high and not yet fully exploited. Here, an approach for the rigorous illumination correction of HSI data, based on the radiometric cross-calibrated return intensity information of ALS data, is presented. The cross calibration utilizes a ray tracing-based fusion of both sensor measurements by intersecting their particular beam shapes. The developed method is capable of compensating for the drawbacks of passive HSI systems, such as cast and cloud shadowing effects, illumination changes over time, across track illumination, and partly anisotropy effects. During processing, spatial and temporal differences in illumination patterns are detected and corrected over the entire HSI wavelength domain. The improvement in the classification accuracy of urban and vegetation surfaces demonstrates the benefit and potential of the proposed HSI illumination correction. The presented approach is the first step toward the rigorous in-flight fusion of passive and active system characteristics, enabling new capabilities for a variety of applications.}, language = {en} }