@article{SallehRamosMadrigalPenalozaetal.2017, author = {Salleh, Faezah Mohd and Ramos-Madrigal, Jazmin and Penaloza, Fernando and Liu, Shanlin and Sinding, Mikkel-Holger S. and Patel, Riddhi P. and Martins, Renata and Lenz, Dorina and Fickel, J{\"o}rns and Roos, Christian and Shamsir, Mohd Shahir and Azman, Mohammad Shahfiz and Lim, Burton K. and Rossiter, Stephen J. and Wilting, Andreas and Gilbert, M. Thomas P.}, title = {An expanded mammal mitogenome dataset from Southeast Asia}, series = {Gigascience}, volume = {6}, journal = {Gigascience}, number = {8}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {2047-217X}, pages = {1 -- 19}, year = {2017}, abstract = {Background: Findings: Approximately 55 gigabases of raw sequence were generated. From this data we assembled 72 complete mitogenome sequences, with an average depth of coverage of 102.9x and 55.2x for modern samples and historical samples, respectively. This dataset represents 52 species, of which 30 species had no previous mitogenome data available. The mitogenomes were geotagged to their sampling location, where known, to display a detailed geographical distribution of the species. Conclusion:}, language = {en} } @article{PatelWutkeLenzetal.2017, author = {Patel, Riddhi P. and Wutke, Saskia and Lenz, Dorina and Mukherjee, Shomita and Ramakrishnan, Uma and Veron, Geraldine and Fickel, J{\"o}rns and Wilting, Andreas and F{\"o}rster, Daniel W.}, title = {Genetic Structure and Phylogeography of the Leopard Cat (Prionailurus bengalensis) Inferred from Mitochondrial Genomes}, series = {Journal of Heredity}, volume = {108}, journal = {Journal of Heredity}, number = {4}, publisher = {Oxford Univ. Press}, address = {Cary}, issn = {0022-1503}, doi = {10.1093/jhered/esx017}, pages = {349 -- 360}, year = {2017}, abstract = {The Leopard cat Prionailurus bengalensis is a habitat generalist that is widely distributed across Southeast Asia. Based on morphological traits, this species has been subdivided into 12 subspecies. Thus far, there have been few molecular studies investigating intraspecific variation, and those had been limited in geographic scope. For this reason, we aimed to study the genetic structure and evolutionary history of this species across its very large distribution range in Asia. We employed both PCR-based (short mtDNA fragments, 94 samples) and high throughput sequencing based methods (whole mitochondrial genomes, 52 samples) on archival, noninvasively collected and fresh samples to investigate the distribution of intraspecific genetic variation. Our comprehensive sampling coupled with the improved resolution of a mitochondrial genome analyses provided strong support for a deep split between Mainland and Sundaic Leopard cats. Although we identified multiple haplogroups within the species' distribution, we found no matrilineal evidence for the distinction of 12 subspecies. In the context of Leopard cat biogeography, we cautiously recommend a revision of the Prionailurus bengalensis subspecific taxonomy: namely, a reduction to 4 subspecies (2 mainland and 2 Sundaic forms).}, language = {en} } @misc{RibeiroMartinsFickelLeetal.2017, author = {Ribeiro Martins, Renata Filipa and Fickel, J{\"o}rns and Le, Minh and Nguyen, Thanh van and Nguyen, Ha M. and Timmins, Robert and Gan, Han Ming and Rovie-Ryan, Jeffrine J. and Lenz, Dorina and F{\"o}rster, Daniel W. and Wilting, Andreas}, title = {Phylogeography of red muntjacs reveals three distinct mitochondrial lineages}, series = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, journal = {Postprints der Universit{\"a}t Potsdam : Mathematisch-Naturwissenschaftliche Reihe}, number = {973}, issn = {1866-8372}, doi = {10.25932/publishup-43078}, url = {http://nbn-resolving.de/urn:nbn:de:kobv:517-opus4-430780}, pages = {14}, year = {2017}, abstract = {Background The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.}, language = {en} } @article{MartinsFickelMinhLeetal.2017, author = {Martins, Renata F. and Fickel, J{\"o}rns and Minh Le, and Thanh Van Nguyen, and Nguyen, Ha M. and Timmins, Robert and Gan, Han Ming and Rovie-Ryan, Jeffrine J. and Lenz, Dorina and F{\"o}rster, Daniel W. and Wilting, Andreas}, title = {Phylogeography of red muntjacs reveals three distinct mitochondrial lineages}, series = {BMC evolutionary biology}, volume = {17}, journal = {BMC evolutionary biology}, number = {34}, publisher = {BioMed Central}, address = {London}, issn = {1471-2148}, doi = {10.1186/s12862-017-0888-0}, pages = {12}, year = {2017}, abstract = {Background: The members of the genus Muntiacus are of particular interest to evolutionary biologists due to their extreme chromosomal rearrangements and the ongoing discussions about the number of living species. Red muntjacs have the largest distribution of all muntjacs and were formerly considered as one species. Karyotype differences led to the provisional split between the Southern Red Muntjac (Muntiacus muntjak) and the Northern Red Muntjac (M. vaginalis), but uncertainties remain as, so far, no phylogenetic study has been conducted. Here, we analysed whole mitochondrial genomes of 59 archival and 16 contemporaneous samples to resolve uncertainties about their taxonomy and used red muntjacs as model for understanding the evolutionary history of other species in Southeast Asia. Results: We found three distinct matrilineal groups of red muntjacs: Sri Lankan red muntjacs (including the Western Ghats) diverged first from other muntjacs about 1.5 Mya; later northern red muntjacs (including North India and Indochina) and southern red muntjacs (Sundaland) split around 1.12 Mya. The diversification of red muntjacs into these three main lineages was likely promoted by two Pleistocene barriers: one through the Indian subcontinent and one separating the Indochinese and Sundaic red muntjacs. Interestingly, we found a high level of gene flow within the populations of northern and southern red muntjacs, indicating gene flow between populations in Indochina and dispersal of red muntjacs over the exposed Sunda Shelf during the Last Glacial Maximum. Conclusions: Our results provide new insights into the evolution of species in South and Southeast Asia as we found clear genetic differentiation in a widespread and generalist species, corresponding to two known biogeographical barriers: The Isthmus of Kra and the central Indian dry zone. In addition, our molecular data support either the delineation of three monotypic species or three subspecies, but more importantly these data highlight the conservation importance of the Sri Lankan/South Indian red muntjac.}, language = {en} } @article{PatelLenzKitcheneretal.2017, author = {Patel, Riddhi P. and Lenz, Dorina and Kitchener, Andrew C. and Fickel, Jorns and Foerster, Daniel W. and Wilting, Andreas}, title = {Threatened but understudied: supporting conservation by understanding the genetic structure of the flat-headed cat}, series = {Conservation genetics}, volume = {18}, journal = {Conservation genetics}, publisher = {Springer}, address = {Dordrecht}, issn = {1566-0621}, doi = {10.1007/s10592-017-0990-2}, pages = {1423 -- 1433}, year = {2017}, language = {en} }