@article{MeyerPtacnikHillebrandetal.2017, author = {Meyer, Sebastian Tobias and Ptacnik, Robert and Hillebrand, Helmut and Bessler, Holger and Buchmann, Nina and Ebeling, Anne and Eisenhauer, Nico and Engels, Christof and Fischer, Markus and Halle, Stefan and Klein, Alexandra-Maria and Oelmann, Yvonne and Roscher, Christiane and Rottstock, Tanja and Scherber, Christoph and Scheu, Stefan and Schmid, Bernhard and Schulze, Ernst-Detlef and Temperton, Vicky M. and Tscharntke, Teja and Voigt, Winfried and Weigelt, Alexandra and Wilcke, Wolfgang and Weisser, Wolfgang W.}, title = {Biodiversity-multifunctionality relationships depend on identity and number of measured functions}, series = {Nature Ecology \& Evolution}, volume = {2}, journal = {Nature Ecology \& Evolution}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-017-0391-4}, pages = {44 -- 49}, year = {2017}, abstract = {Biodiversity ensures ecosystem functioning and provisioning of ecosystem services, but it remains unclear how biodiversity-ecosystem multifunctionality relationships depend on the identity and number of functions considered. Here, we demonstrate that ecosystem multifunctionality, based on 82 indicator variables of ecosystem functions in a grassland biodiversity experiment, increases strongly with increasing biodiversity. Analysing subsets of functions showed that the effects of biodiversity on multifunctionality were stronger when more functions were included and that the strength of the biodiversity effects depended on the identity of the functions included. Limits to multifunctionality arose from negative correlations among functions and functions that were not correlated with biodiversity. Our findings underline that the management of ecosystems for the protection of biodiversity cannot be replaced by managing for particular ecosystem functions or services and emphasize the need for specific management to protect biodiversity. More plant species from the experimental pool of 60 species contributed to functioning when more functions were considered. An individual contribution to multifunctionality could be demonstrated for only a fraction of the species.}, language = {en} } @article{RottstockKummerFischeretal.2017, author = {Rottstock, Tanja and Kummer, Volker and Fischer, Markus and Joshi, Jasmin Radha}, title = {Rapid transgenerational effects in Knautia arvensis in response to plant community diversity}, series = {The journal of ecology}, volume = {105}, journal = {The journal of ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.12689}, pages = {714 -- 725}, year = {2017}, abstract = {1. Plant species persistence in natural communities requires coping with biotic and abiotic challenges. These challenges also depend on plant community composition and diversity. Over time, biodiversity effects have been shown to be strengthened via increasing species complementarity in mixtures. Little is known, however, whether differences in community diversity and composition induce rapid transgenerational phenotypic adaptive differentiation during community assembly. We expect altered plant-plant and other biotic interactions (mutualists or antagonists) in high vs. low diverse communities to affect immediate within-and between-species trait differentiations due to competition for light and nutrients. 2. Three years after the initiation of a large-scale, long-term biodiversity experiment in Jena, Germany, we tested for effects of varying experimental plant community diversity (1-60 plant species; one to four plant functional groups) and composition (with or without legumes and/or grasses) on phenotypic differentiation and variation of the tall herb Knautia arvensis. We measured reproduction at different diversity levels in the Jena Experiment (residents hereafter) and, in an additional common garden experiment without competition, recorded subsequent offspring performance (i.e. growth, reproductive success and susceptibility to powdery mildew) to test for differentiation in phenotypic expression and variability. 3. We observed phenotypic differences among diversity levels with reduced fecundity of K. arvensis residents in more diverse communities. In the next generation grown under common garden conditions, offspring from high-diversity plots showed reduced growth (i.e. height) and lower reproduction (i.e. fewer infructescences), but increased phenotypic trait variability (e.g. in leaf width and powdery mildew presence) and also tended to be less susceptible to powdery mildew infection. 4. Community composition also affected Knautia parents and offspring. In the presence of legumes, resident plants produced more seeds (increased fecundity); however, germination rate of those seeds was reduced at an early seedling stage (reduced fertility). 5. Synthesis. We conclude that rapid transgenerational effects of community diversity and composition on both mean and variation of phenotypic traits among offspring exist. In addition to heritable variation, environmentally induced epigenetic and/or maternal processes matter for early plant community assembly and may also determine future species coexistence and community stability.}, language = {en} }