@article{SubramanianRubeleSunetal.2017, author = {Subramanian, Smitha and Rubele, Stefano and Sun, Ning-Chen and Girardi, Leo and de Grijs, Richard and van Loon, Jacco Th. and Cioni, Maria-Rosa L. and Piatti, Andres E. and Bekki, Kenji and Emerson, Jim and Ivanov, Valentin D. and Kerber, Leandro and Marconi, Marcella and Ripepi, Vincenzo and Tatton, Benjamin L.}, title = {The VMC Survey - XXIV. Signatures of tidally stripped stellar populations from the inner Small Magellanic Cloud}, series = {Monthly notices of the Royal Astronomical Society}, volume = {467}, journal = {Monthly notices of the Royal Astronomical Society}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx205}, pages = {2980 -- 2995}, year = {2017}, language = {en} } @article{SundeGrijsSubramanianetal.2017, author = {Sun, Ning-Chen and de Grijs, Richard and Subramanian, Smitha and Cioni, Maria-Rosa L. and Rubele, Stefano and Bekki, Kenji and Ivanov, Valentin D. and Piatti, Andr{\´e}s E. and Ripepi, Vincenzo}, title = {The VMC Survey. XXII. Hierarchical star formation in the 30 Doradus-N158-N159-N160 star-forming complex}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {835}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {Institute of Physics Publ.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/835/2/171}, pages = {10}, year = {2017}, abstract = {We study the hierarchical stellar structures in a similar to 1.5 deg(2) area covering the 30. Doradus-N158-N159-N160 starforming complex with the VISTA Survey of. Magellanic Clouds. Based on the young upper main-sequence stars, we find that the surface densities cover a wide range of values, from log(Sigma.pc(2))less than or similar to -2.0 to log(Sigma. pc(2)) greater than or similar to 0.0. Their distributions are highly non-uniform, showing groups that frequently have subgroups inside. The sizes of the stellar groups do not exhibit characteristic values, and range continuously from several parsecs to more than 100. pc; the cumulative size distribution can be well described by a single power law, with the power-law index indicating a projected fractal dimension D-2 = 1.6 +/- 0.3. We suggest that the phenomena revealed here support a scenario of hierarchical star formation. Comparisons with other star-forming regions and galaxies are also discussed.}, language = {en} } @article{SundeGrijsSubramanianetal.2017, author = {Sun, Ning-Chen and de Grijs, Richard and Subramanian, Smitha and Bekki, Kenji and Bell, Cameron P. M. and Cioni, Maria-Rosa L. and Ivanov, Valentin D. and Marconi, Marcella and Oliveira, Joana M. and Piatti, Andres E. and Ripepi, Vincenzo and Rubele, Stefano and Tatton, Ben L. and van Loon, Jacco Th.}, title = {The VMC Survey. XXII. Hierarchical Star Formation in the 30 Doradus-N158-N159-N160 Star-forming Complex}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {849}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa911e}, pages = {16}, year = {2017}, abstract = {Star formation is a hierarchical process, forming young stellar structures of star clusters, associations, and complexes over a wide range of scales. The star-forming complex in the bar region of the Large Magellanic Cloud is investigated with upper main-sequence stars observed by the VISTA Survey of the Magellanic Clouds. The upper main-sequence stars exhibit highly nonuniform distributions. Young stellar structures inside the complex are identified from the stellar density map as density enhancements of different significance levels. We find that these structures are hierarchically organized such that larger, lower-density structures contain one or several smaller, higher-density ones. They follow power-law size and mass distributions, as well as a lognormal surface density distribution. All these results support a scenario of hierarchical star formation regulated by turbulence. The temporal evolution of young stellar structures is explored by using subsamples of upper main-sequence stars with different magnitude and age ranges. While the youngest subsample, with a median age of log(tau/yr) = 7.2, contains the most substructure, progressively older ones are less and less substructured. The oldest subsample, with a median age of log(tau/yr) = 8.0, is almost indistinguishable from a uniform distribution on spatial scales of 30-300. pc, suggesting that the young stellar structures are completely dispersed on a timescale of similar to 100. Myr. These results are consistent with the characteristics of the 30. Doradus complex and the entire Large Magellanic Cloud, suggesting no significant environmental effects. We further point out that the fractal dimension may be method dependent for stellar samples with significant age spreads.}, language = {en} }