@article{ThierbachNeissGallandietal.2017, author = {Thierbach, Adrian and Neiss, Christian and Gallandi, Lukas and Marom, Noa and Koerzdoerfer, Thomas and Goerling, Andreas}, title = {Accurate Valence Ionization Energies from Kohn-Sham Eigenvalues with the Help of Potential Adjustors}, series = {Journal of chemical theory and computation}, volume = {13}, journal = {Journal of chemical theory and computation}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.7b00490}, pages = {4726 -- 4740}, year = {2017}, abstract = {An accurate yet computationally very efficient and formally well justified approach to calculate molecular ionization potentials is presented and tested. The first as well as higher ionization potentials are obtained as the negatives of the Kohn-Sham eigenvalues of the neutral molecule after adjusting the eigenvalues by a recently [Gorling Phys. Rev. B 2015, 91, 245120] introduced potential adjustor for exchange-correlation potentials. Technically the method is very simple. Besides a Kohn-Sham calculation of the neutral molecule, only a second Kohn-Sham calculation of the cation is required. The eigenvalue spectrum of the neutral molecule is shifted such that the negative of the eigenvalue of the highest occupied molecular orbital equals the energy difference of the total electronic energies of the cation minus the neutral molecule. For the first ionization potential this simply amounts to a Delta SCF calculation. Then, the higher ionization potentials are obtained as the negatives of the correspondingly shifted Kohn-Sham eigenvalues. Importantly, this shift of the Kohn-Sham eigenvalue spectrum is not just ad hoc. In fact, it is formally necessary for the physically correct energetic adjustment of the eigenvalue spectrum as it results from ensemble density-functional theory. An analogous approach for electron affinities is equally well obtained and justified. To illustrate the practical benefits of the approach, we calculate the valence ionization energies of test sets of small- and medium-sized molecules and photoelectron spectra of medium-sized electron acceptor molecules using a typical semilocal (PBE) and two typical global hybrid functionals (B3LYP and PBE0). The potential adjusted B3LYP and PBE0 eigenvalues yield valence ionization potentials that are in very good agreement with experimental values, reaching an accuracy that is as good as the best G(0)W(0) methods, however, at much lower computational costs. The potential adjusted PBE eigenvalues result in somewhat less accurate ionization energies, which, however, are almost as accurate as those obtained from the most commonly used G(0)W(0) variants.}, language = {en} } @article{BoisKoerzdoerfer2017, author = {Bois, Juliana and Koerzdoerfer, Thomas}, title = {Size-Dependence of Nonempirically Tuned DFT Starting Points for G(0)W(0) Applied to pi-Conjugated Molecular Chains}, series = {Journal of chemical theory and computation}, volume = {13}, journal = {Journal of chemical theory and computation}, publisher = {American Chemical Society}, address = {Washington}, issn = {1549-9618}, doi = {10.1021/acs.jctc.7b00557}, pages = {4962 -- 4971}, year = {2017}, abstract = {G(0)W(0) calculations for predicting vertical ionization potentials (IPs) and electron affinities of molecules and clusters are known to show a significant dependence on the density functional theory (DFT) starting point. A number of nonempirical procedures to find an optimal starting point have been proposed, typically based on tuning the amount of HF exchange in the underlying hybrid functional specifically for the system at hand. For the case of pi-conjugated molecular chains, these approaches lead to a significantly different amount of HF exchange for different oligomer sizes. In this study, we analyze if and how strongly this size dependence affects the ability of nonempirical tuning approaches to predict accurate IPs for pi-conjugated molecular chains of increasing chain length. To this end, we employ three different nonempirical tuning procedures for the G(0)W(0) starting point to calculate the IP of polyene oligomers up to 22 repeat units and compare the results to highly accurate coupled-cluster calculations. We find that, despite its size dependence, using an IP-tuned hybrid functional as a starting point for G(0)W(0) yields excellent agreement with the reference data for all chain lengths.}, language = {en} } @article{BrietzkeDietzKellingetal.2017, author = {Brietzke, Thomas Martin and Dietz, Thomas and Kelling, Alexandra and Schilde, Uwe and Bois, Juliana and Kelm, Harald and Reh, Manuel and Schmitz, Markus and Koerzdoerfer, Thomas and Leimk{\"u}hler, Silke and Wollenberger, Ulla and Krueger, Hans-Joerg and Holdt, Hans-J{\"u}rgen}, title = {The 1,6,7,12-Tetraazaperylene Bridging Ligand as an Electron Reservoir and Its Disulfonato Derivative as Redox Mediator in an Enzyme-Electrode Process}, series = {Chemistry - a European journal}, volume = {23}, journal = {Chemistry - a European journal}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0947-6539}, doi = {10.1002/chem.201703639}, pages = {15583 -- 15587}, year = {2017}, abstract = {The homodinuclear ruthenium(II) complex [{Ru(l-N4Me2)}(2)(-tape)](PF6)(4) {[1](PF6)(4)} (l-N4Me2=N,N-dimethyl-2,11-diaza[3.3](2,6)-pyridinophane, tape=1,6,7,12-tetraazaperylene) can store one or two electrons in the energetically low-lying * orbital of the bridging ligand tape. The corresponding singly and doubly reduced complexes [{Ru(l-N4Me2)}(2)(-tape(.-))](PF6)(3) {[2](PF6)(3)} and [{Ru(l-N4Me2)}(2)(-tape(2-))](PF6)(2) {[3](PF6)(2)}, respectively, were electrochemically generated, successfully isolated and fully characterized by single-crystal X-ray crystallography, spectroscopic methods and magnetic susceptibility measurements. The singly reduced complex [2](PF6)(3) contains the -radical tape(.-) and the doubly reduced [3](PF6)(2) the diamagnetic dianion tape(2-) as bridging ligand, respectively. Nucleophilic aromatic substitution at the bridging tape in [1](4+) by two sulfite units gave the complex [{Ru(l-N4Me2)}(2){-tape-(SO3)(2)}](2+) ([4](2+)). Complex dication [4](2+) was exploited as a redox mediator between an anaerobic homogenous reaction solution of an enzyme system (sulfite/sulfite oxidase) and the electrode via participation of the low-energy *-orbital of the disulfonato-substituted bridging ligand tape-(SO3)(2)(2-) (E-red1=-0.1V versus Ag/AgCl/1m KCl in water).}, language = {en} }