@article{MuellerHuweWissemannetal.2017, author = {M{\"u}ller, Christina Magdalena and Huwe, Bj{\"o}rn and Wissemann, Volker and Joshi, Jasmin Radha and Gemeinholzer, Birgit}, title = {Conservation genetic assessment of four plant species in a small replica of a steppe ecosystem >30 years after establishment}, series = {Biodiversity and conservation}, volume = {26}, journal = {Biodiversity and conservation}, publisher = {Springer}, address = {Dordrecht}, issn = {0960-3115}, doi = {10.1007/s10531-017-1381-1}, pages = {2699 -- 2716}, year = {2017}, language = {en} } @article{GuerreroRamirezCravenReichetal.2017, author = {Guerrero-Ramirez, Nathaly Rokssana and Craven, Dylan and Reich, Peter B. and Ewel, John J. and Isbell, Forest and Koricheva, Julia and Parrotta, John A. and Auge, Harald and Erickson, Heather E. and Forrester, David I. and Hector, Andy and Joshi, Jasmin Radha and Montagnini, Florencia and Palmborg, Cecilia and Piotto, Daniel and Potvin, Catherine and Roscher, Christiane and van Ruijven, Jasper and Tilman, David and Wilsey, Brian and Eisenhauer, Nico}, title = {Diversity-dependent temporal divergence of ecosystem functioning in experimental ecosystems}, series = {Nature ecology \& evolution}, volume = {1}, journal = {Nature ecology \& evolution}, number = {11}, publisher = {Nature Publ. Group}, address = {London}, issn = {2397-334X}, doi = {10.1038/s41559-017-0325-1}, pages = {1639 -- 1642}, year = {2017}, abstract = {The effects of biodiversity on ecosystem functioning generally increase over time, but the underlying processes remain unclear. Using 26 long-term grassland and forest experimental ecosystems, we demonstrate that biodiversity-ecosystem functioning relationships strengthen mainly by greater increases in functioning in high-diversity communities in grasslands and forests. In grasslands, biodiversity effects also strengthen due to decreases in functioning in low-diversity communities. Contrasting trends across grasslands are associated with differences in soil characteristics.}, language = {en} } @article{SchwarzerJoshi2017, author = {Schwarzer, Christian and Joshi, Jasmin Radha}, title = {Parallel adaptive responses to abiotic but not biotic conditions after cryptic speciation in European peat moss Sphagnum magellanicum Brid}, series = {Perspectives in plant ecology, evolution and systematics}, volume = {26}, journal = {Perspectives in plant ecology, evolution and systematics}, publisher = {Elsevier}, address = {Jena}, issn = {1433-8319}, doi = {10.1016/j.ppees.2017.03.001}, pages = {14 -- 27}, year = {2017}, abstract = {Sphagnum magellanicum Brid. is a worldwide distributed peat moss and an ecosystem-engineer in temperate and boreal bog ecosystems suggesting a great adaptive potential to different environmental conditions. Phenotypes of S. magellanicum have been described as one species so far, although this has been questioned by the detection of several genetic groups in a recent global study. Concordant with morphological uniformity, our analyses of Mid-to Northern European plants revealed only minimal variation in nuclear nrITS and plastid rps4 sequences. However, we detected two distinct genetic groups within Europe by analyzing microsatellite data of 298 individuals from 27 populations. Plants formed an Eastern and a Western European cluster, with overlapping areas in northern Germany and southern Sweden where plants of both clusters coexist within populations but show no signs of admixture. These two cryptic taxa seem therefore to be reproductively isolated. Bayesian analyses indicated that reproductive isolation occurred before the end of the late Pleistocene glaciations. After the meltdown of the glaciers, both clusters colonized northern and central Europe from glacial refugia in the West and possibly from Euro-Siberian populations. To test for divergent adaptation to environmental conditions, we exposed plants of both clusters to experimental climate warming treatments at two different plant-diversity levels (monocultures vs. mixtures) for two years. Despite their different evolutionary history, plants of both genetic clusters responded equally to climate treatments in our southern common garden near Potsdam, Germany. However, only eastern cluster populations benefited from plant-community diversity and increased their biomass in mixtures. These differences in their ecological niche match the diverging microhabitat preferences observed in situ and may effectively hamper genetic exchange if distances between microhabitats are too large for Sphagnum sperm movement. (C) 2017 Elsevier GmbH. All rights reserved.}, language = {en} } @article{HeinzeJoshi2017, author = {Heinze, Johannes and Joshi, Jasmin Radha}, title = {Plant-soil feedback effects can be masked by aboveground herbivory under natural field conditions}, series = {Oecologia}, volume = {186}, journal = {Oecologia}, number = {1}, publisher = {Springer}, address = {New York}, issn = {0029-8549}, doi = {10.1007/s00442-017-3997-y}, pages = {235 -- 246}, year = {2017}, abstract = {For plants, herbivory and interactions with their surrounding soil ecosystem are crucial factors influencing individual performance and plant-community composition. Until now, research has mostly focused on individual effects of herbivory or plant-soil feedbacks (PSFs) on plant growth and community composition, but few studies have explicitly investigated herbivory in the context of PSFs. These few studies, however, were performed under greenhouse conditions even though PSFs and herbivory may differ between greenhouse and field conditions. Therefore, we performed a field experiment in a grassland, testing the growth responses of three grass species that consistently differ in local abundance, on soils previously conditioned by these species. We tested these PSF effects for the three species both in the presence and in the absence of aboveground herbivores. Without herbivores, the two subdominant species suffered from negative PSF effects. However, in the presence of herbivores and on heterospecific soils, the same two species experienced a significant loss of shoot biomass, whereas, in contrast, enhanced root growth was observed on conspecific soils, resulting in overall neutral PSF effects. The dominant species was not damaged by herbivores and showed overall neutral PSF effects in the field with and without herbivores. Our study provides empirical evidence that negative PSF effects that exist under natural field conditions in grasslands can be overwhelmed by aboveground herbivory. Hence, potential PSF effects might not be detected in the field, because other abiotic and biotic interactions such as aboveground herbivory have stronger effects on plant performance and might therefore mask or override these PSF effects.}, language = {en} } @article{RottstockKummerFischeretal.2017, author = {Rottstock, Tanja and Kummer, Volker and Fischer, Markus and Joshi, Jasmin Radha}, title = {Rapid transgenerational effects in Knautia arvensis in response to plant community diversity}, series = {The journal of ecology}, volume = {105}, journal = {The journal of ecology}, publisher = {Wiley}, address = {Hoboken}, issn = {0022-0477}, doi = {10.1111/1365-2745.12689}, pages = {714 -- 725}, year = {2017}, abstract = {1. Plant species persistence in natural communities requires coping with biotic and abiotic challenges. These challenges also depend on plant community composition and diversity. Over time, biodiversity effects have been shown to be strengthened via increasing species complementarity in mixtures. Little is known, however, whether differences in community diversity and composition induce rapid transgenerational phenotypic adaptive differentiation during community assembly. We expect altered plant-plant and other biotic interactions (mutualists or antagonists) in high vs. low diverse communities to affect immediate within-and between-species trait differentiations due to competition for light and nutrients. 2. Three years after the initiation of a large-scale, long-term biodiversity experiment in Jena, Germany, we tested for effects of varying experimental plant community diversity (1-60 plant species; one to four plant functional groups) and composition (with or without legumes and/or grasses) on phenotypic differentiation and variation of the tall herb Knautia arvensis. We measured reproduction at different diversity levels in the Jena Experiment (residents hereafter) and, in an additional common garden experiment without competition, recorded subsequent offspring performance (i.e. growth, reproductive success and susceptibility to powdery mildew) to test for differentiation in phenotypic expression and variability. 3. We observed phenotypic differences among diversity levels with reduced fecundity of K. arvensis residents in more diverse communities. In the next generation grown under common garden conditions, offspring from high-diversity plots showed reduced growth (i.e. height) and lower reproduction (i.e. fewer infructescences), but increased phenotypic trait variability (e.g. in leaf width and powdery mildew presence) and also tended to be less susceptible to powdery mildew infection. 4. Community composition also affected Knautia parents and offspring. In the presence of legumes, resident plants produced more seeds (increased fecundity); however, germination rate of those seeds was reduced at an early seedling stage (reduced fertility). 5. Synthesis. We conclude that rapid transgenerational effects of community diversity and composition on both mean and variation of phenotypic traits among offspring exist. In addition to heritable variation, environmentally induced epigenetic and/or maternal processes matter for early plant community assembly and may also determine future species coexistence and community stability.}, language = {en} } @article{EstendorferStempfhuberHauryetal.2017, author = {Estendorfer, Jennifer and Stempfhuber, Barbara and Haury, Paula and Vestergaard, Gisle and Rillig, Matthias C. and Joshi, Jasmin Radha and Schr{\"o}der, Peter and Schloter, Michael}, title = {The Influence of Land Use Intensity on the Plant-Associated Microbiome of Dactylis glomerata L.}, series = {Frontiers in plant science}, volume = {8}, journal = {Frontiers in plant science}, publisher = {Frontiers Research Foundation}, address = {Lausanne}, issn = {1664-462X}, doi = {10.3389/fpls.2017.00930}, pages = {10}, year = {2017}, abstract = {In this study, we investigated the impact of different land use intensities (LUI) on the root-associated microbiome of Dactylis glomerata (orchardgrass). For this purpose, eight sampling sites with different land use intensity levels but comparable soil properties were selected in the southwest of Germany. Experimental plots covered land use levels from natural grassland up to intensively managed meadows. We used 16S rRNA gene based barcoding to assess the plant-associated community structure in the endosphere, rhizosphere and bulk soil of D. glomerata. Samples were taken at the reproductive stage of the plant in early summer. Our data indicated that roots harbor a distinct bacterial community, which clearly differed from the microbiome of the rhizosphere and bulk soil. Our results revealed Pseudomonadaceae, Enterobacteriaceae and Comamonadaceae as the most abundant endophytes independently of land use intensity. Rhizosphere and bulk soil were dominated also by Proteobacteria, but the most abundant families differed from those obtained from root samples. In the soil, the effect of land use intensity was more pronounced compared to root endophytes leading to a clearly distinct pattern of bacterial communities under different LUI from rhizosphere and bulk soil vs. endophytes. Overall, a change of community structure on the plant-soil interface was observed, as the number of shared OTUs between all three compartments investigated increased with decreasing land use intensity. Thus, our findings suggest a stronger interaction of the plant with its surrounding soil under low land use intensity. Furthermore, the amount and quality of available nitrogen was identified as a major driver for shifts in the microbiome structure in all compartments.}, language = {en} }