@article{VishnevetskayaHildebrandNiebuuretal.2017, author = {Vishnevetskaya, Natalya S. and Hildebrand, Viet and Niebuur, Bart-Jan and Grillo, Isabelle and Filippov, Sergey K. and Laschewsky, Andre and Mueller-Buschbaum, Peter and Papadakis, Christine M.}, title = {"Schizophrenic" Micelles from Doubly Thermoresponsive Polysulfobetaine-b-poly(N-isopropylmethacrylamide) Diblock Copolymers}, series = {Macromolecules : a publication of the American Chemical Society}, volume = {50}, journal = {Macromolecules : a publication of the American Chemical Society}, publisher = {American Chemical Society}, address = {Washington}, issn = {0024-9297}, doi = {10.1021/acs.macromol.7b00356}, pages = {3985 -- 3999}, year = {2017}, language = {en} } @article{HildebrandHeydenreichLaschewskyetal.2017, author = {Hildebrand, Viet and Heydenreich, Matthias and Laschewsky, Andre and Moeller, Heiko M. and Mueller-Buschbaum, Peter and Papadakis, Christine M. and Schanzenbach, Dirk and Wischerhoff, Erik}, title = {"Schizophrenic" self-assembly of dual thermoresponsive block copolymers bearing a zwitterionic and a non-ionic hydrophilic block}, series = {Polymer : the international journal for the science and technology of polymers}, volume = {122}, journal = {Polymer : the international journal for the science and technology of polymers}, publisher = {Elsevier}, address = {Oxford}, issn = {0032-3861}, doi = {10.1016/j.polymer.2017.06.063}, pages = {347 -- 357}, year = {2017}, abstract = {Several series of presumed dual thermo-responsive diblock copolymers consisting of one non-ionic and one zwitterionic block were synthesized via consecutive reversible addition-fragmentation chain transfer (RAFT) polymerization. For all copolymers, poly(N-isopropylmethacrylamide) was chosen as non-ionic block that shows a coil-to-globule collapse transition of the lower critical solution temperature (LCST) type. In contrast, the chemical structure of zwitterionic blocks, which all belonged to the class of poly(sulfobetaine methacrylate)s, was varied broadly, in order to tune their coil-to-globule collapse transition of the upper critical solution temperature (UCST) type. All polymers were labeled with a solvatochromic fluorescent end-group. The dual thermo-responsive behavior and the resulting multifarious temperature-dependent self-assembly in aqueous solution were mapped by temperature resolved turbidimetry, H-1 NMR spectroscopy, dynamic light scattering (DLS), and fluorescence spectroscopy. Depending on the relative positions between the UCST-type and LCST-type transition temperatures, as well as on the width of the window in-between, all the four possible modes of stimulus induced micellization can be realized. This includes classical induced micellization due to a transition from a double hydrophilic, or respectively, from a double hydrophobic to an amphiphilic state, as well as "schizophrenic" behavior, where the core- and shell-forming blocks are inverted. The exchange of the roles of the hydrophilic and hydrophobic block in the amphiphilic states is possible through a homogeneous intermediate state or a heterogeneous one. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} } @article{HildebrandLaschewskyPaechetal.2017, author = {Hildebrand, Viet and Laschewsky, Andre and P{\"a}ch, Michael and M{\"u}ller-Buschbaum, Peter and Papadakis, Christine M.}, title = {Effect of the zwitterion structure on the thermo-responsive behaviour of poly(sulfobetaine methacrylates)}, series = {Polymer Chemistry}, volume = {8}, journal = {Polymer Chemistry}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c6py01220e}, pages = {310 -- 322}, year = {2017}, abstract = {A series of new sulfobetaine methacrylates, including nitrogen-containing saturated heterocycles, was synthesised by systematically varying the substituents of the zwitterionic group. Radical polymerisation via the RAFT (reversible addition-fragmentation chain transfer) method in trifluoroethanol proceeded smoothly and was well controlled, yielding polymers with predictable molar masses. Molar mass analysis and control of the end-group fidelity were facilitated by end-group labeling with a fluorescent dye. The polymers showed distinct thermo-responsive behaviour of the UCST (upper critical solution temperature) type in an aqueous solution, which could not be simply correlated to their molecular structure via an incremental analysis of the hydrophilic and hydrophobic elements incorporated within them. Increasing the spacer length separating the ammonium and the sulfonate groups of the zwitterion moiety from three to four carbons increased the phase transition temperatures markedly, whereas increasing the length of the spacer separating the ammonium group and the carboxylate ester group on the backbone from two to three carbons provoked the opposite effect. Moreover, the phase transition temperatures of the analogous polyzwitterions decreased in the order dimethylammonio > morpholinio > piperidinio alkanesulfonates. In addition to the basic effect of the polymers' precise molecular structure, the concentration and the molar mass dependence of the phase transition temperatures were studied. Furthermore, we investigated the influence of added low molar mass salts on the aqueous-phase behaviour for sodium chloride and sodium bromide as well as sodium and ammonium sulfate. The strong effects evolved in a complex way with the salt concentration. The strength of these effects depended on the nature of the anion added, increasing in the order sulfate < chloride < bromide, thus following the empirical Hofmeister series. In contrast, no significant differences were observed when changing the cation, i.e. when adding sodium or ammonium sulfate.}, language = {en} }