@article{AttermeyerGrossartFluryetal.2017, author = {Attermeyer, Katrin and Grossart, Hans-Peter and Flury, Sabine and Premke, Katrin}, title = {Bacterial processes and biogeochemical changes in the water body of kettle holes - mainly driven by autochthonous organic matter?}, series = {Aquatic sciences : research across boundaries}, volume = {79}, journal = {Aquatic sciences : research across boundaries}, publisher = {Springer}, address = {Basel}, issn = {1015-1621}, doi = {10.1007/s00027-017-0528-1}, pages = {675 -- 687}, year = {2017}, abstract = {Kettle holes are small inland waters formed from glacially-created depressions often situated in agricultural landscapes. Due to their high perimeter-to-area ratio facilitating a high aquatic-terrestrial coupling, kettle holes can accumulate high concentrations of organic carbon and nutrients, fueling microbial activities and turnover rates. Thus, they represent hotspots of carbon turnover in the landscape, but their bacterial activities and controlling factors have not been well investigated. Therefore, we aimed to assess the relative importance of various environmental factors on bacterial and biogeochemical processes in the water column of kettle holes and to disentangle their variations. In the water body of ten kettle holes in north-eastern Germany, we measured several physico-chemical and biological parameters such as carbon quantity and quality, as well as bacterial protein production (BP) and community respiration (CR) in spring, early summer and autumn 2014. Particulate organic matter served as an indicator of autochthonous production and represented an important parameter to explain variations in BP and CR. This notion is supported by qualitative absorbance indices of dissolved molecules in water samples and C: N ratios of the sediments, which demonstrate high fractions of autochthonous organic matter (OM) in the studied kettle holes. In contrast, dissolved chemical parameters were less important for bacterial activities although they revealed strong differences throughout the growing season. Pelagic bacterial activities and dynamics might thus be regulated by autochthonous OM in kettle holes implying a control of important biogeochemical processes by internal primary production rather than facilitated exchange with the terrestrial surrounding due to a high perimeter-to-area ratio.}, language = {en} } @article{McGinnisFluryTangetal.2017, author = {McGinnis, Daniel F. and Flury, Sabine and Tang, Kam W. and Grossart, Hans-Peter}, title = {Porewater methane transport within the gas vesicles of diurnally migrating Chaoborus spp.}, series = {Scientific reports}, volume = {7}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep44478}, pages = {7}, year = {2017}, abstract = {Diurnally-migrating Chaoborus spp. reach populations of up to 130,000 individuals m-2 in lakes up to 70 meters deep on all continents except Antarctica. Linked to eutrophication, migrating Chaoborus spp. dwell in the anoxic sediment during daytime and feed in the oxic surface layer at night. Our experiments show that by burrowing into the sediment, Chaoborus spp. utilize the high dissolved gas partial pressure of sediment methane to inflate their tracheal sacs. This mechanism provides a significant energetic advantage that allows the larvae to migrate via passive buoyancy rather than more energy-costly swimming. The Chaoborus spp. larvae, in addition to potentially releasing sediment methane bubbles twice a day by entering and leaving the sediment, also transport porewater methane within their gas vesicles into the water column, resulting in a flux of 0.01-2 mol m-2 yr-1 depending on population density and water depth. Chaoborus spp. emerging annually as flies also result in 0.1-6 mol m-2 yr-1 of carbon export from the system. Finding the tipping point in lake eutrophication enabling this methane-powered migration mechanism is crucial for ultimately reconstructing the geographical expansion of Chaoborus spp., and the corresponding shifts in the lake's biogeochemistry, carbon cycling and food web structure.}, language = {en} } @article{TangFluryGrossartetal.2017, author = {Tang, Kam W. and Flury, Sabine and Grossart, Hans-Peter and McGinnis, Daniel F.}, title = {The Chaoborus pump: Migrating phantom midge larvae sustain hypolimnetic oxygen deficiency and nutrient internal loading in lakes}, series = {Water research}, volume = {122}, journal = {Water research}, publisher = {Elsevier}, address = {Oxford}, issn = {0043-1354}, doi = {10.1016/j.watres.2017.05.058}, pages = {36 -- 41}, year = {2017}, abstract = {Hypolimnetic oxygen demand in lakes is often assumed to be driven mainly by sediment microbial processes, while the role of Chaoborus larvae, which are prevalent in eutrophic lakes with hypoxic to anoxic bottoms, has been overlooked. We experimentally measured the respiration rates of C flavicans at different temperatures yielding a Q(10) of 1.44-1.71 and a respiratory quotient of 0.84-0.98. Applying the experimental data in a system analytical approach, we showed that migrating Chaoborus larvae can significantly add to the water column and sediment oxygen demand, and contribute to the observed linear relationship between water column respiration and depth. The estimated phosphorus excretion by Chaoborus in sediment is comparable in magnitude to the required phosphorus loading for eutrophication. Migrating Chaoborus larvae thereby essentially trap nutrients between the water column and the sediment, and this continuous internal loading of nutrients would delay lake remediation even when external inputs are stopped. (C) 2017 Elsevier Ltd. All rights reserved.}, language = {en} }