@article{HeuerRaabeMenzel2014, author = {Heuer, Axel and Raabe, S. and Menzel, Ralf}, title = {Phase memory across two single-photon interferometers including wavelength conversion}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {90}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {4}, publisher = {American Physical Society}, address = {College Park}, issn = {1050-2947}, doi = {10.1103/PhysRevA.90.045803}, pages = {4}, year = {2014}, abstract = {Spontaneous parametric down-conversion (SPDC) in a nonlinear crystal generates two single photons (signal and idler) with random phases. Thus, no first-order interference between them occurs. However, coherence can be induced in a cascaded setup of two crystals if, e.g., the idler modes of both crystals are aligned to be indistinguishable. Due to the effect of phase memory it is found that the first-order interference of the signal beams can be controlled by the phase delay between the pump beams. Even for pump photon delays much larger than the coherence length of the SPDC photons, the visibility is above 90\%. The high visibilities reported here prove an almost perfect phase memory effect across the two interferometers for the pump and the signal photon modes.}, language = {en} }