@article{MiedemaWernetFoehlisch2014, author = {Miedema, Piter S. and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {State-dependent fluorescence yields through the core-valence Coulomb exchange parameter}, series = {Physical review : A, Atomic, molecular, and optical physics}, volume = {89}, journal = {Physical review : A, Atomic, molecular, and optical physics}, number = {5}, publisher = {American Physical Society}, address = {College Park}, issn = {1050-2947}, doi = {10.1103/PhysRevA.89.052507}, pages = {7}, year = {2014}, abstract = {Total and partial fluorescence yield (PFY) L-edge x-ray absorption spectra differ from the transmission x-ray absorption spectra (XAS) through state-dependent fluorescence yield across the XAS. For 3d(1) to 3d(9) in octahedral symmetry we apply simulations of PFY and XAS and show how the atomic 2p3d Coulomb exchange parameter G(pd) governs the differences in the L-3/(L-2 + L-3) branching ratio between PFY and XAS. G(pd) orders the XAS final states following Hund's rules creating a strong state-dependent fluorescence decay strength variation across the XAS leading to the differences between PFY and XAS.}, language = {en} } @article{SchreckPietzschKunnusetal.2014, author = {Schreck, Simon and Pietzsch, Annette and Kunnus, Kristjan and Kennedy, Brian and Quevedo, Wilson and Miedema, Piter S. and Wernet, Philippe and F{\"o}hlisch, Alexander}, title = {Dynamics of the OH group and the electronic structure of liquid alcohols}, series = {Structural dynamics}, volume = {1}, journal = {Structural dynamics}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {2329-7778}, doi = {10.1063/1.4897981}, pages = {14}, year = {2014}, abstract = {In resonant inelastic soft x-ray scattering (RIXS) from molecular and liquid systems, the interplay of ground state structural and core-excited state dynamical contributions leads to complex spectral shapes that partially allow for ambiguous interpretations. In this work, we dissect these contributions in oxygen K-edge RIXS from liquid alcohols. We use the scattering into the electronic ground state as an accurate measure of nuclear dynamics in the intermediate core-excited state of the RIXS process. We determine the characteristic time in the core-excited state until nuclear dynamics give a measurable contribution to the RIXS spectral profiles to tau(dyn) = 1.2 +/- 0.8 fs. By detuning the excitation energy below the absorption resonance we reduce the effective scattering time below sdyn, and hence suppress these dynamical contributions to a minimum. From the corresponding RIXS spectra of liquid methanol, we retrieve the "dynamic-free" density of states and find that it is described solely by the electronic states of the free methanol molecule. From this and from the comparison of normal and deuterated methanol, we conclude that the split peak structure found in the lone-pair emission region at non-resonant excitation originates from dynamics in the O-H bond in the core-excited state. We find no evidence that this split peak feature is a signature of distinct ground state structural complexes in liquid methanol. However, we demonstrate how changes in the hydrogen bond coordination within the series of linear alcohols from methanol to hexanol affect the split peak structure in the liquid alcohols. (C) 2014 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution 3.0 Unported License.}, language = {en} }