@article{SuttonKoerzdoerferGrayetal.2014, author = {Sutton, Christopher and K{\"o}rzd{\"o}rfer, Thomas and Gray, Matthew T. and Brunsfeld, Max and Parrish, Robert M. and Sherrill, C. David and Sears, John S. and Bredas, Jean-Luc}, title = {Accurate description of torsion potentials in conjugated polymers using density functionals with reduced self-interaction error}, series = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, volume = {140}, journal = {The journal of chemical physics : bridges a gap between journals of physics and journals of chemistr}, number = {5}, publisher = {American Institute of Physics}, address = {Melville}, issn = {0021-9606}, doi = {10.1063/1.4863218}, pages = {9}, year = {2014}, abstract = {We investigate the torsion potentials in two prototypical pi-conjugated polymers, polyacetylene and polydiacetylene, as a function of chain length using different flavors of density functional theory. Our study provides a quantitative analysis of the delocalization error in standard semilocal and hybrid density functionals and demonstrates how it can influence structural and thermodynamic properties. The delocalization error is quantified by evaluating the many-electron self-interaction error (MESIE) for fractional electron numbers, which allows us to establish a direct connection between the MESIE and the error in the torsion barriers. The use of non-empirically tuned long-range corrected hybrid functionals results in a very significant reduction of the MESIE and leads to an improved description of torsion barrier heights. In addition, we demonstrate how our analysis allows the determination of the effective conjugation length in polyacetylene and polydiacetylene chains.}, language = {en} } @article{SuttonKoerzdoerferCoropceanuetal.2014, author = {Sutton, Christopher and K{\"o}rzd{\"o}rfer, Thomas and Coropceanu, Veaceslav and Bredas, Jean-Luc}, title = {Toward a robust quantum-chemical description of organic mixed-valence systems}, series = {The journal of physical chemistry : C, Nanomaterials and interfaces}, volume = {118}, journal = {The journal of physical chemistry : C, Nanomaterials and interfaces}, number = {8}, publisher = {American Chemical Society}, address = {Washington}, issn = {1932-7447}, doi = {10.1021/jp410461v}, pages = {3925 -- 3934}, year = {2014}, abstract = {The electronic coupling between redox sites in mixed-valence systems has attracted the interest of the chemistry community for a long time. Many computational studies have focused on trying to determine its magnitude as a function of the nature of the redox sites and of the bridge(s) between them. However, in most instances, the quantum-chemical methodologies that have been employed suffer from intrinsic errors that lead to either an overlocalized or an overdelocalized character of the electronic structure. These deficiencies prevent an accurate depiction of the degree of charge (de)localization in the system and, as a result, of the extent of electronic coupling. Here we use nonempirically tuned long-range corrected density functional theory and show that it provides a robust, efficient approach to characterize organic mixed-valence systems. We first demonstrate the performance of this approach via a study of representative Robin-Day class-II (localized) and class-III (delocalized) complexes. We then examine a borderline class-II/class-III complex, which had proven difficult to describe accurately with standard density functional theory and Hartree-Fock methods.}, language = {en} } @article{BaierMetznerKoerzdoerferetal.2014, author = {Baier, Heiko and Metzner, Philipp and K{\"o}rzd{\"o}rfer, Thomas and Kelling, Alexandra and Holdt, Hans-J{\"u}rgen}, title = {Efficient palladium(II) precatalysts bearing 4,5-dicyanoimidazol-2-ylidene for the Mizoroki-Heck reaction}, series = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, journal = {European journal of inorganic chemistry : a journal of ChemPubSoc Europe}, number = {18}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {1434-1948}, doi = {10.1002/ejic.201402040}, pages = {2952 -- 2960}, year = {2014}, abstract = {The new N-heterocyclic carbene (NHC) complex [PdCl2{(CN)(2)IMes}(PPh3)] (2) ({(CN)(2)IMes}: 4,5-dicyano-1,3-dimesitylimidazol-2-ylidene) and the NHC palladacycle [PdCl(dmba){(CN)(2)IMes}] (3) (dmba: N,N-dimethylbenzylamine) have been synthesized by thermolysis of 4,5-dicyano-1,3-dimesityl-2-(pentafluorophenyl) imidazoline (1) in the presence of suitable palladium(II) precursors. The acyclic complex 2 was formed by ligand exchange using the mononuclear precursor [PdCl2(PPh3)(2)] and the palladacycle 3 was formed by cleavage of the dinuclear chloro-bridged precursor [Pd(mu-Cl)(dmba)](2). The new NHC precursor 1-benzyl-4,5-dicyano-2-(pentafluorophenyl)-3-picolylimidazoline (5) was formed by condensation of pentafluorobenzaldehyde with N-benzyl-N'-picolyldiaminomaleonitrile (4). The NHC palladacycle [PdCl2{(CN)(2)IBzPic}] (6) ({(CN)(2)IBzPic}: 1-benzyl-4,5-dicyano-3-picolylimidazol-2-ylidene) was prepared by in situ thermolysis of 5 in the presence of [PdCl2(PhCN)(2)]. The three palladium(II) complexes were characterized by NMR and IR spectroscopy, mass spectrometry and elemental analysis. In addition, the molecular structures of 2 and 3 were determined by X-ray diffraction. The pi-acidity of (CN)(2)IBzPic was compared with (CN)(2)IMes and perviously reported pi-acidic imidazol-2-ylidenes by NBO analysis. The Mizoroki-Heck (MH) reactions of various aryl halides with n-butyl acrylate were performed in the presence of complexes 2, 3 and 6. The new precatalysts showed high activity in the MH reactions giving good-to-excellent product yields with 0.1 mol-\% pre-catalyst. The nature of the catalytically active species of 2, 3 and 6 was investigated by poisoning experiments with mercury and transmission electron microscopy. It was found that palladium nanoparticles formed from the precatalysts were involved in the catalytic process.}, language = {en} } @article{MaromKoerzdoerferRenetal.2014, author = {Marom, Noa and K{\"o}rzd{\"o}rfer, Thomas and Ren, Xinguo and Tkatchenko, Alexandre and Chelikowsky, James R.}, title = {Size effects in the interface level alignment of dye-Sensitized TiO2 clusters}, series = {The journal of physical chemistry letters}, volume = {5}, journal = {The journal of physical chemistry letters}, number = {14}, publisher = {American Chemical Society}, address = {Washington}, issn = {1948-7185}, doi = {10.1021/jz5008356}, pages = {2395 -- 2401}, year = {2014}, abstract = {The efficiency of dye-sensitized solar cells (DSCs) depends critically on the electronic structure of the interfaces in the active region. We employ recently developed dispersion-inclusive density functional theory (DFT) and GW methods to study the electronic structure of TiO2 clusters sensitized with catechol molecules. We show that the energy level alignment at the dye-TiO2 interface is the result of an intricate interplay of quantum size effects and dynamic screening effects and that it may be manipulated by nanostructuring and functionalizing the TiO2. We demonstrate that the energy difference between the catechol LUMO and the TiO2 LUMO, which is associated with the injection loss in DSCs, may be reduced significantly by reducing the dimensions of nanostructured TiO2 and by functionalizing the TiO2 with wide-gap moieties, which contribute additional screening but do not interact strongly with the frontier orbitals of the TiO2 and the dye. Precise control of the electronic structure may be achieved via "interface engineering" in functional nanostructures.}, language = {en} } @misc{KoerzdoerferBredas2014, author = {K{\"o}rzd{\"o}rfer, Thomas and Bredas, Jean-Luc}, title = {Organic electronic materials: recent advances in the DFT description of the ground and excited states using tuned range-separated hybrid functionals}, series = {Accounts of chemical research}, volume = {47}, journal = {Accounts of chemical research}, number = {11}, publisher = {American Chemical Society}, address = {Washington}, issn = {0001-4842}, doi = {10.1021/ar500021t}, pages = {3284 -- 3291}, year = {2014}, abstract = {CONSPECTUS: Density functional theory (DFT) and its time-dependent extension (TD-DFT) are powerful tools enabling the theoretical prediction of the ground- and excited-state properties of organic electronic materials with reasonable accuracy at affordable computational costs. Due to their excellent accuracy-to-numerical-costs ratio, semilocal and global hybrid functionals such as B3LYP have become the workhorse for geometry optimizations and the prediction of vibrational spectra in modern theoretical organic chemistry. Despite the overwhelming success of these out-of-the-box functionals for such applications, the computational treatment of electronic and structural properties that are of particular interest in organic electronic materials sometimes reveals severe and qualitative failures of such functionals. Important examples include the overestimation of conjugation, torsional barriers, and electronic coupling as well as the underestimation of bond-length alternations or excited-state energies in low-band-gap polymers. In this Account, we highlight how these failures can be traced back to the delocalization error inherent to semilocal and global hybrid functionals, which leads to the spurious delocalization of electron densities and an overestimation of conjugation. The delocalization error for systems and functionals of interest can be quantified by allowing for fractional occupation of the highest occupied molecular orbital. It can be minimized by using long-range corrected hybrid functionals and a nonempirical tuning procedure for the range-separation parameter. We then review the benefits and drawbacks of using tuned long-range corrected hybrid functionals for the description of the ground and excited states of pi-conjugated systems. In particular, we show that this approach provides for robust and efficient means of characterizing the electronic couplings in organic mixed-valence systems, for the calculation of accurate torsional barriers at the polymer limit, and for the reliable prediction of the optical absorption spectrum of low-band-gap polymers. We also explain why the use of standard, out-of-the-box range-separation parameters is not recommended for the DFT and/or TD-DFT description of the ground and excited states of extended, pi-conjugated systems. Finally, we highlight a severe drawback of tuned range-separated hybrid functionals by discussing the example of the calculation of bond-length alternation in polyacetylene, which leads us to point out the challenges for future developments in this field.}, language = {en} } @article{KellerRackwitzCauetetal.2014, author = {Keller, Adrian and Rackwitz, Jenny and Cauet, Emilie and Lievin, Jacques and K{\"o}rzd{\"o}rfer, Thomas and Rotaru, Alexandru and Gothelf, Kurt V. and Besenbacher, Flemming and Bald, Ilko}, title = {Sequence dependence of electron-induced DNA strand breakage revealed by DNA nanoarrays}, series = {Scientific reports}, volume = {4}, journal = {Scientific reports}, publisher = {Nature Publ. Group}, address = {London}, issn = {2045-2322}, doi = {10.1038/srep07391}, pages = {6}, year = {2014}, language = {en} }