@article{GoetzChmielewskiHomannetal.2014, author = {Goetz, Klaus-Peter and Chmielewski, Frank M. and Homann, Thomas and Huschek, Gerd and Matzneller, Philipp and Rawel, Harshadrai Manilal}, title = {Seasonal changes of physiological parameters in sweet cherry (Prunus avium L.) buds}, series = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, volume = {172}, journal = {Scientia horticulturae : an international journal sponsored by the International Society for Horticultural Science}, publisher = {Elsevier}, address = {Amsterdam}, issn = {0304-4238}, doi = {10.1016/j.scienta.2014.04.012}, pages = {183 -- 190}, year = {2014}, abstract = {The transition from dormant stage to the beginning of growth was first obvious by markedly changes of the water content. The phase from green tip to tight cluster, with a length of only 4 days, was the period of the most physiological activity in single buds, because of the highest daily accumulation rates of fresh/dry weight, C, N. We assume a concentration dependant regulation of the member of the aspartate family (asparagine, aspartic acid, isoleucine) during dormancy, growth and development in sweet cherry buds. The ABA content showed 2011/12 a clear bimodal pattern which was at lower level similar in 2012/13, but not so strong incisive. In both years, the first peak was probably related to the end of endodormancy. However the ABA-isomer content showed in both seasons a unimodal pattern. The maximum of the ratio of ABA-isomer/ABA indicated the beginning of ontogenetic development which starts 3 and 2 weeks later, respectively. Our results suggest that ABA and the ABA-isomer in the sweet cherry buds regulate differentiated metabolic processes in the dormant stage and during bud growth and development. After replication in the season 2013/14 the estimated dates of release of endodormancy, beginning of ecodormancy and start of ontogenetic development will be used to validate and improve phenological models for the beginning of cherry blossom. (C) 2014 Elsevier B.V. All rights reserved.}, language = {en} } @article{UhrBuchholzHomannetal.2014, author = {Uhr, Linda and Buchholz, Tina and Homann, Thomas and Huschek, Gerd and Rawel, Harshadrai Manilal}, title = {Targeted proteomics-based analysis of technical enzymes from fungal origin in baked products}, series = {Journal of cereal science}, volume = {60}, journal = {Journal of cereal science}, number = {2}, publisher = {Elsevier}, address = {London}, issn = {0733-5210}, doi = {10.1016/j.jcs.2014.04.007}, pages = {440 -- 447}, year = {2014}, abstract = {The application of technical enzymes is a potential tool in modulating the dough and baking quality of cereal products. No endogenous amylases (alpha- and beta-forms) are present in mature wheat grains; they may be synthesized or activated during germination. Hence, microbial alpha-amylases are added to the dough, being resistant to the endogenous alpha-amylase/trypsin inhibitors. Here, we report on the initial identification of two technical enzymes from a commercial sample based on an in-gel tryptic digestion coupled with MALDI-MS analysis. The primary component of the protein fraction with 51.3 kDa was alpha-amylase from Aspergillus species. A second major protein with 24.8 kDa was identified as endo-1,4-xylanase from Thermomyces lanuginosus. In the following experimental work up, a targeted proteomics approach utilizing the combination of specific proteolytic digestion of the added amylase and xylanase in wheat flour, dough or baked products, solid phase extraction of released peptides and their detection using LC-MS/MS was optimized. The targeted (MRM) MS/MS peptide signals showed that the peptide "ALSSALHER" (MW = 983) originating from amylase and "GWNPGLNAR" (MW = 983) from xylanase can be used to identify the corresponding technical enzymes added. Consequently, locally available baked products were tested and found to contain these enzymes as supplementary ingredients. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} } @article{ImeriFalleggerZivkovicetal.2014, author = {Imeri, Faik and Fallegger, Daniel and Zivkovic, Aleksandra and Schwalm, Stephanie and Enzmann, Gaby and Blankenbach, Kira and Heringdorf, Dagmar Meyer Zu and Homann, Thomas and Kleuser, Burkhard and Pfeilschifter, Josef and Engelhardt, Britta and Stark, Holger and Huwiler, Andrea}, title = {Novel oxazolo-oxazole derivatives of FTY720 reduce endothelial cell permeability, immune cell chemotaxis and symptoms of experimental autoimmune encephalomyelitis in mice}, series = {Neuropharmacology}, volume = {85}, journal = {Neuropharmacology}, publisher = {Elsevier}, address = {Oxford}, issn = {0028-3908}, doi = {10.1016/j.neuropharm.2014.05.012}, pages = {314 -- 327}, year = {2014}, abstract = {The immunomodulatory FTY720 (fingolimod) is presently approved for the treatment of relapsing-remitting multiple sclerosis. It is a prodrug that acts by modulating sphingosine 1-phosphate (S1P) receptor signaling. In this study, we have developed and characterized two novel oxazolo-oxazole derivatives of FTY720, ST-968 and the oxy analog ST-1071, which require no preceding activating phosphorylation, and proved to be active in intact cells and triggered S1P(1) and S1P(3), but not S1P(2), receptor internalization as a result of receptor activation. Functionally, ST-968 and ST-1071 acted similar to FTY720 to abrogate S1P-triggered chemotaxis of mouse splenocytes, mouse T cells and human U937 cells, and reduced TNFa- and LPS-stimulated endothelial cell permeability. The compounds also reduced TNF alpha-induced ICAM-1 and VCAM-1 mRNA expression, but restored TNF alpha-mediated downregulation of PECAM-1 mRNA expression. In an in vivo setting, the application of ST-968 or ST-1071 to mice resulted in a reduction of blood lymphocytes and significantly reduced the clinical symptoms of experimental autoimmune encephalomyelitis (EAE) in C57BL/6 mice comparable to FTY720 either by prophylactic or therapeutic treatment. In parallel to the reduced clinical symptoms, infiltration of immune cells in the brain was strongly reduced, and in isolated tissues of brain and spinal cord, the mRNA and protein expressions of ICAM-1 and VCAM-1, as well as of matrix metalloproteinase-9 were reduced by all compounds, whereas PECAM-1 and tissue inhibitor of metalloproteinase TIMP-1 were upregulated. In summary, the data suggest that these novel butterfly derivatives of FTY720 could have considerable implication for future therapies of multiple sclerosis and other autoimmune diseases. (C) 2014 Elsevier Ltd. All rights reserved.}, language = {en} }