@article{VandewalAlbrechtHokeetal.2014, author = {Vandewal, Koen and Albrecht, Steve and Hoke, Eric T. and Graham, Kenneth R. and Widmer, Johannes and Douglas, Jessica D. and Schubert, Marcel and Mateker, William R. and Bloking, Jason T. and Burkhard, George F. and Sellinger, Alan and Frechet, Jean M. J. and Amassian, Aram and Riede, Moritz K. and McGehee, Michael D. and Neher, Dieter and Salleo, Alberto}, title = {Efficient charge generation by relaxed charge-transfer states at organic interfaces}, series = {Nature materials}, volume = {13}, journal = {Nature materials}, number = {1}, publisher = {Nature Publ. Group}, address = {London}, issn = {1476-1122}, doi = {10.1038/NMAT3807}, pages = {63 -- 68}, year = {2014}, abstract = {carriers on illumination. Efficient organic solar cells require a high yield for this process, combined with a minimum of energy losses. Here, we investigate the role of the lowest energy emissive interfacial charge-transfer state (CT1) in the charge generation process. We measure the quantum yield and the electric field dependence of charge generation on excitation of the charge-transfer (CT) state manifold viaweakly allowed, low-energy optical transitions. For a wide range of photovoltaic devices based on polymer: fullerene, small-molecule:C-60 and polymer: polymer blends, our study reveals that the internal quantum efficiency (IQE) is essentially independent of whether or not D, A or CT states with an energy higher than that of CT1 are excited. The best materials systems show an IQE higher than 90\% without the need for excess electronic or vibrational energy.}, language = {en} } @article{CherstvyPetrov2014, author = {Cherstvy, Andrey G. and Petrov, Eugene P.}, title = {Modeling DNA condensation on freestanding cationic lipid membranes}, series = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, volume = {16}, journal = {Physical chemistry, chemical physics : a journal of European Chemical Societies}, number = {5}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1463-9076}, doi = {10.1039/c3cp53433b}, pages = {2020 -- 2037}, year = {2014}, abstract = {Motivated by recent experimental observations of a rapid spontaneous DNA coil-globule transition on freestanding cationic lipid bilayers, we propose simple theoretical models for DNA condensation on cationic lipid membranes. First, for a single DNA rod, we examine the conditions of full wrapping of a cylindrical DNA-like semi-flexible polyelectrolyte by an oppositely charged membrane. Then, for two parallel DNA rods, we self-consistently analyze the shape and the extent of the membrane enveloping them, focusing on membrane elastic deformations and the membrane-DNA embracing angle, which enables us to compute the membrane-mediated DNA-DNA interactions. We examine the effects of the membrane composition and its charge density, which are the experimentally tunable parameters. We show that membrane-driven rod-rod attraction is more pronounced for higher charge densities and for smaller surface tensions of the membrane. Thus, we demonstrate that for a long DNA chain adhered to a cationic lipid membrane, such membrane-induced DNA-DNA attraction can trigger compaction of DNA.}, language = {en} } @article{TuWang2014, author = {Tu, Rui and Wang, Li}, title = {Real-time coseismic wave retrieving by integrated Kalman filter with observations of GPS, Glonass and strong-motion sensor}, series = {Advances in space research}, volume = {53}, journal = {Advances in space research}, number = {1}, publisher = {Elsevier}, address = {Oxford}, issn = {0273-1177}, doi = {10.1016/j.asr.2013.10.011}, pages = {130 -- 137}, year = {2014}, abstract = {A method of real-time coseismic wave retrieving was proposed based on the tight integration of GPS, Glonass and strong-motion sensor observations, the validation and precision analysis have been made by an experimental data. The series of results have been shown that: by the integrated Kalman filter and multi-sensors, the coseismic waves can be optimally recovered by complement the advantages of each other, especially when the observation conditions are very bad. In additional, the results are not significantly effected by different receiver clock error processes for the integration solution.}, language = {en} } @article{KustererNagelHartmannetal.2014, author = {Kusterer, D. -J. and Nagel, T. and Hartmann, S. and Werner, K. and Feldmeier, Achim}, title = {Monte Carlo radiation transfer in CV disk winds: application to the AM CVn prototype}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {561}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201321438}, pages = {10}, year = {2014}, abstract = {Context. AMCVn systems are ultracompact binaries in which a (semi-) degenerate star transfers helium-dominated matter onto a white dwarf. They are effective gravitational-wave emitters and potential progenitors of Type Ia supernovae. Aims. To understand the evolution of AMCVn systems it is necessary to determine their mass-loss rate through their radiation-driven accretion-disk wind. We constructed models to perform quantitative spectroscopy of P Cygni line profiles that were detected in UV spectra. Methods. We performed 2.5D Monte Carlo radiative transfer calculations in hydrodynamic wind structures by making use of realistic NLTE spectra from the accretion disk and by accounting for the white dwarf as an additional photon source. Results. We present first results from calculations in which LTE opacities are used in the wind model. A comparison with UV spectroscopy of the AMCVn prototype shows that the modeling procedure is potentially a good tool for determining mass-loss rates and abundances of trace metals in the helium-rich wind.}, language = {en} } @article{Wendt2014, author = {Wendt, Martin}, title = {Constraints on variations of m(p)/m(e) based on UVES observations of H-2}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312008}, pages = {106 -- 112}, year = {2014}, abstract = {This article summarizes the latest results on the proton-to-electron mass ratio derived from H-2 observations at high redshift in the light of possible variations of fundamental physical constants. The focus lies on UVES observations of the past years as enormous progress was achieved since the first positive results on / were published. With the better understanding of systematics, dedicated observation runs, and numerous approaches to improve wavelength calibration accuracy, all current findings are in reasonable good agreement with no variation and provide an upper limit of / < 1 x 10(-5) for the redshift range of 2 < z < 3. ((}, language = {en} } @article{RichterFoxBenBekhtietal.2014, author = {Richter, Philipp and Fox, Andrew J. and Ben Bekhti, Nadya and Murphy, M. T. and Bomans, Dominik J. and Frank, S.}, title = {High-resolution absorption spectroscopy of the circumgalactic medium of the Milky Way}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312013}, pages = {92 -- 98}, year = {2014}, language = {en} } @article{BonifacioRahmaniWhitmoreetal.2014, author = {Bonifacio, P. and Rahmani, H. and Whitmore, J. B. and Wendt, Martin and Centurion, Martin and Molaro, P. and Srianand, R. and Murphy, M. T. and Petitjean, P. and Agafonova, I. I. and Evans, T. M. and Levshakov, S. A. and Lopez, S. and Martins, C. J. A. P. and Reimers, D. and Vladilo, G.}, title = {Fundamental constants and high-resolution spectroscopy}, series = {Astronomische Nachrichten = Astronomical notes}, volume = {335}, journal = {Astronomische Nachrichten = Astronomical notes}, number = {1}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0004-6337}, doi = {10.1002/asna.201312005}, pages = {83 -- 91}, year = {2014}, language = {en} } @article{CherstvyChechkinMetzler2014, author = {Cherstvy, Andrey G. and Chechkin, Aleksei V. and Metzler, Ralf}, title = {Particle invasion, survival, and non-ergodicity in 2D diffusion processes with space-dependent diffusivity}, series = {Soft matter}, volume = {10}, journal = {Soft matter}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1744-683X}, doi = {10.1039/c3sm52846d}, pages = {1591 -- 1601}, year = {2014}, abstract = {We study the thermal Markovian diffusion of tracer particles in a 2D medium with spatially varying diffusivity D(r), mimicking recently measured, heterogeneous maps of the apparent diffusion coefficient in biological cells. For this heterogeneous diffusion process (HDP) we analyse the mean squared displacement (MSD) of the tracer particles, the time averaged MSD, the spatial probability density function, and the first passage time dynamics from the cell boundary to the nucleus. Moreover we examine the non-ergodic properties of this process which are important for the correct physical interpretation of time averages of observables obtained from single particle tracking experiments. From extensive computer simulations of the 2D stochastic Langevin equation we present an in-depth study of this HDP. In particular, we find that the MSDs along the radial and azimuthal directions in a circular domain obey anomalous and Brownian scaling, respectively. We demonstrate that the time averaged MSD stays linear as a function of the lag time and the system thus reveals a weak ergodicity breaking. Our results will enable one to rationalise the diffusive motion of larger tracer particles such as viruses or submicron beads in biological cells.}, language = {en} } @article{MkrtchianHenkel2014, author = {Mkrtchian, Vanik E. and Henkel, Carsten}, title = {On non-equilibrium photon distributions in the Casimir effect}, series = {Annalen der Physik}, volume = {526}, journal = {Annalen der Physik}, number = {1-2}, publisher = {Wiley-VCH}, address = {Weinheim}, issn = {0003-3804}, doi = {10.1002/andp.201300135}, pages = {87 -- 101}, year = {2014}, abstract = {The electromagnetic field in a typical geometry of the Casimir effect is described in the Schwinger-Keldysh formalism. The main result is the photon distribution function (Keldysh Green function) in any stationary state of the field. A two-plate geometry with a sliding interface in local equilibrium is studied in detail, and full agreement with the results of Rytov fluctuation electrodynamics is found.}, language = {en} } @article{LiuTkachovKomberetal.2014, author = {Liu, W. and Tkachov, R. and Komber, H. and Senkovskyy, V. and Schubert, M. and Wei, Z. and Facchetti, A. and Neher, Dieter and Kiriy, A.}, title = {Chain-growth polycondensation of perylene diimide-based copolymers: a new route to regio-regular perylene diimide-based acceptors for all-polymer solar cells and n-type transistors}, series = {Polymer Chemistry}, volume = {5}, journal = {Polymer Chemistry}, number = {10}, publisher = {Royal Society of Chemistry}, address = {Cambridge}, issn = {1759-9954}, doi = {10.1039/c3py01707a}, pages = {3404 -- 3411}, year = {2014}, abstract = {Herein, we report the chain-growth tin-free room temperature polymerization method to synthesize n-type perylene diimide-dithiophene-based conjugated polymers (PPDIT2s) suitable for solar cell and transistor applications. The palladium/electron-rich tri-tert-butylphosphine catalyst is effective to enable the chain-growth polymerization of anion-radical monomer Br-TPDIT-Br/Zn to PPDIT2 with a molecular weight up to M-w approximate to 50 kg mol(-1) and moderate polydispersity. This is the second example of the polymerization of unusual anion-radical aromatic complexes formed in a reaction of active Zn and electron-deficient diimide-based aryl halides. As such, the discovered polymerization method is not a specific reactivity feature of the naphthalene-diimide derivatives but is rather a general polymerization tool. This is an important finding, given the significantly higher maximum external quantum efficiency that can be reached with PDI-based copolymers (32-45\%) in all-polymer solar cells compared to NDI-based materials (15-30\%). Our studies revealed that PPDIT2 synthesized by the new method and the previously published polymer prepared by step-growth Stille polycondensation show similar electron mobility and all-polymer solar cell performance. At the same time, the polymerization reported herein has several technological advantages as it proceeds relatively fast at room temperature and does not involve toxic tin-based compounds. Because several chain-growth polymerization reactions are well-suited for the preparation of well-defined multi-functional polymer architectures, the next target is to explore the utility of the discovered polymerization in the synthesis of end-functionalized polymers and block copolymers. Such materials would be helpful to improve the nanoscale morphology of polymer blends in all-polymer solar cells.}, language = {en} }