@article{ThomasPfrommerPakmor2021, author = {Thomas, Timon and Pfrommer, Christoph and Pakmor, R{\"u}diger}, title = {A finite volume method for two-moment cosmic ray hydrodynamics on a moving mesh}, series = {Monthly notices of the Royal Astronomical Society}, volume = {503}, journal = {Monthly notices of the Royal Astronomical Society}, number = {2}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab397}, pages = {2242 -- 2264}, year = {2021}, abstract = {We present a new numerical algorithm to solve the recently derived equations of two-moment cosmic ray hydrodynamics (CRHD). The algorithm is implemented as a module in the moving mesh AREPO code. Therein, the anisotropic transport of cosmic rays (CRs) along magnetic field lines is discretized using a path-conservative finite volume method on the unstructured time-dependent Voronoi mesh of AREPO. The interaction of CRs and gyroresonant Alfven waves is described by short time-scale source terms in the CRHD equations. We employ a custom-made semi-implicit adaptive time stepping source term integrator to accurately integrate this interaction on the small light-crossing time of the anisotropic transport step. Both the transport and the source term integration step are separated from the evolution of the magnetohydrodynamical equations using an operator split approach. The new algorithm is tested with a variety of test problems, including shock tubes, a perpendicular magnetized discontinuity, the hydrodynamic response to a CR overpressure, CR acceleration of a warm cloud, and a CR blast wave, which demonstrate that the coupling between CR and magnetohydrodynamics is robust and accurate. We demonstrate the numerical convergence of the presented scheme using new linear and non-linear analytic solutions.}, language = {en} } @article{WerhahnPfrommerGirichidis2021, author = {Werhahn, Maria and Pfrommer, Christoph and Girichidis, Philipp}, title = {Cosmic rays and non-thermal emission in simulated galaxies - III. Probing cosmic-ray calorimetry with radio spectra and the FIR-radio correlation}, series = {Monthly notices of the Royal Astronomical Society}, volume = {508}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab2535}, pages = {4072 -- 4095}, year = {2021}, abstract = {An extinction-free estimator of the star formation rate (SFR) of galaxies is critical for understanding the high-redshift universe. To this end, the nearly linear, tight correlation of far-infrared (FIR), and radio luminosity of star-forming galaxies is widely used. While the FIR is linked to massive star formation, which also generates shock-accelerated cosmic-ray (CR) electrons and radio synchrotron emission, a detailed understanding of the underlying physics is still lacking. Hence, we perform three-dimensional magnetohydrodynamical (MHD) simulations of isolated galaxies over a broad range of halo masses and SFRs using the moving-mesh code AREPO, and evolve the CR proton energy density self-consistently. In post-processing, we calculate the steady-state spectra of primary, shock-accelerated and secondary CR electrons, which result from hadronic CR proton interactions with the interstellar medium. The resulting total radio luminosities correlate with the FIR luminosities as observed and are dominated by primary CR electrons if we account for anisotropic CR diffusion. The increasing contribution of secondary emission up to 30 per cent in starbursts is compensated by the larger bremsstrahlung and Coulomb losses. CR electrons are in the calorimetric limit and lose most of their energy through inverse Compton interactions with star light and cosmic microwave background (CMB) photons while less energy is converted into synchrotron emission. This implies steep steady-state synchrotron spectra in starbursts. Interestingly, we find that thermal free-free emission flattens the total radio spectra at high radio frequencies and reconciles calorimetric theory with observations while free-free absorption explains the observed low-frequency flattening towards the central regions of starbursts.}, language = {en} } @article{WerhahnPfrommerGirichidisetal.2021, author = {Werhahn, Maria and Pfrommer, Christoph and Girichidis, Philipp and Puchwein, Ewald and Pakmor, R{\"u}diger}, title = {Cosmic rays and non-thermal emission in simulated galaxies}, series = {Monthly notices of the Royal Astronomical Society}, volume = {505}, journal = {Monthly notices of the Royal Astronomical Society}, number = {3}, publisher = {Oxford University Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stab1324}, pages = {3273 -- 3294}, year = {2021}, abstract = {Current-day cosmic ray (CR) propagation studies use static Milky Way models and fit parametrized source distributions to data. Instead, we use three-dimensional magnetohydrodynamic (MHD) simulations of isolated galaxies with the moving-mesh code arepo that self-consistently accounts for hydrodynamic effects of CR protons. In post-processing, we calculate their steady-state spectra, taking into account all relevant loss processes. We show that this steady-state assumption is well justified in the disc and generally for regions that emit non-thermal radio and gamma rays. Additionally, we model the spectra of primary electrons, accelerated by supernova remnants, and secondary electrons and positrons produced in hadronic CR proton interactions with the gas. We find that proton spectra above 10 GeV only weakly depend on galactic radius, while they acquire a radial dependence at lower energies due to Coulomb interactions. Radiative losses steepen the spectra of primary CR electrons in the central galactic regions, while diffusive losses dominate in the outskirts. Secondary electrons exhibit a steeper spectrum than primaries because they originate from the transported steeper CR proton spectra. Consistent with Voyager-1 and AMS-02 data, our models (i) show a turnover of proton spectra below GeV energies due to Coulomb interactions so that electrons start to dominate the total particle spectra and (ii) match the shape of the positron fraction up to 10 GeV. We conclude that our steady-state CR modelling in MHD CR galaxy simulations is sufficiently realistic to capture the dominant transport effects shaping their spectra, arguing for a full MHD treatment to accurately model CR transport in the future.}, language = {en} } @article{WilhelmTelezhinskyDwarkadasetal.2020, author = {Wilhelm, Alina and Telezhinsky, Igor and Dwarkadas, Vikram V. and Pohl, Martin}, title = {Stochastic re-acceleration and magnetic-field damping in Tycho's supernova remnant}, series = {Astronomy and astrophysics}, volume = {639}, journal = {Astronomy and astrophysics}, publisher = {EDP Sciences}, address = {Les Ulis}, issn = {0004-6361}, doi = {10.1051/0004-6361/201936079}, pages = {14}, year = {2020}, abstract = {Context. Tycho's supernova remnant (SNR) is associated with the historical supernova (SN) event SN 1572 of Type Ia. The explosion occurred in a relatively clean environment, and was visually observed, providing an age estimate. This SNR therefore represents an ideal astrophysical test-bed for the study of cosmic-ray acceleration and related phenomena. A number of studies suggest that shock acceleration with particle feedback and very efficient magnetic-field amplification combined with Alfvenic drift are needed to explain the rather soft radio spectrum and the narrow rims observed in X-rays. Aims. We show that the broadband spectrum of Tycho's SNR can alternatively be well explained when accounting for stochastic acceleration as a secondary process. The re-acceleration of particles in the turbulent region immediately downstream of the shock should be efficient enough to impact particle spectra over several decades in energy. The so-called Alfvenic drift and particle feedback on the shock structure are not required in this scenario. Additionally, we investigate whether synchrotron losses or magnetic-field damping play a more profound role in the formation of the non-thermal filaments. Methods. We solved the full particle transport equation in test-particle mode using hydrodynamic simulations of the SNR plasma flow. The background magnetic field was either computed from the induction equation or follows analytic profiles, depending on the model considered. Fast-mode waves in the downstream region provide the diffusion of particles in momentum space. Results. We show that the broadband spectrum of Tycho can be well explained if magnetic-field damping and stochastic re-acceleration of particles are taken into account. Although not as efficient as standard diffusive shock acceleration, stochastic acceleration leaves its imprint on the particle spectra, which is especially notable in the emission at radio wavelengths. We find a lower limit for the post-shock magnetic-field strength similar to 330 mu G, implying efficient amplification even for the magnetic-field damping scenario. Magnetic-field damping is necessary for the formation of the filaments in the radio range, while the X-ray filaments are shaped by both the synchrotron losses and magnetic-field damping.}, language = {en} } @article{WarrenEllisonBarkovetal.2017, author = {Warren, Donald C. and Ellison, Donald C. and Barkov, Maxim V. and Nagataki, Shigehiro}, title = {Nonlinear Particle Acceleration and Thermal Particles in GRB Afterglows}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {835}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa56c3}, pages = {15}, year = {2017}, abstract = {The standard model for GRB afterglow emission treats the accelerated electron population as a simple power law, N(E) proportional to E-p for p greater than or similar to 2. However, in standard Fermi shock acceleration, a substantial fraction of the swept-up particles do not enter the acceleration process at all. Additionally, if acceleration is efficient, then the nonlinear back-reaction of accelerated particles on the shock structure modifies the shape of the nonthermal tail of the particle spectra. Both of these modifications to the standard synchrotron afterglow impact the luminosity, spectra, and temporal variation of the afterglow. To examine the effects of including thermal particles and nonlinear particle acceleration on afterglow emission, we follow a hydrodynamical model for an afterglow jet and simulate acceleration at numerous points during the evolution. When thermal particles are included, we find that the electron population is at no time well fitted by a single power law, though the highest-energy electrons are; if the acceleration is efficient, then the power-law region is even smaller. Our model predicts hard-soft-hard spectral evolution at X-ray energies, as well as an uncoupled X-ray and optical light curve. Additionally, we show that including emission from thermal particles has drastic effects (increases by factors of 100 and 30, respectively) on the observed flux at optical and GeV energies. This enhancement of GeV emission makes afterglow detections by future gamma-ray observatories, such as CTA, very likely.}, language = {en} } @article{AceroAloisioAmansetal.2017, author = {Acero, F. and Aloisio, R. and Amans, J. and Amato, Elena and Antonelli, L. A. and Aramo, C. and Armstrong, T. and Arqueros, F. and Asano, Katsuaki and Ashley, M. and Backes, M. and Balazs, C. and Balzer, A. and Bamba, Aya and Barkov, Maxim and Barrio, J. A. and Benbow, Wystan and Bernloehr, K. and Beshley, V. and Bigongiari, C. and Biland, A. and Bilinsky, A. and Bissaldi, Elisabetta and Biteau, J. and Blanch, O. and Blasi, P. and Blazek, J. and Boisson, C. and Bonanno, G. and Bonardi, A. and Bonavolonta, C. and Bonnoli, G. and Braiding, C. and Brau-Nogue, S. and Bregeon, J. and Brown, A. M. and Bugaev, V. and Bulgarelli, A. and Bulik, T. and Burton, Michael and Burtovoi, A. and Busetto, G. and Bottcher, M. and Cameron, R. and Capalbi, M. and Caproni, Anderson and Caraveo, P. and Carosi, R. and Cascone, E. and Cerruti, M. and Chaty, Sylvain and Chen, A. and Chen, X. and Chernyakova, M. and Chikawa, M. and Chudoba, J. and Cohen-Tanugi, J. and Colafrancesco, S. and Conforti, V. and Contreras, J. L. and Costa, A. and Cotter, G. and Covino, Stefano and Covone, G. and Cumani, P. and Cusumano, G. and Daniel, M. and Dazzi, F. and De Angelis, A. and De Cesare, G. and De Franco, A. and De Frondat, F. and Dal Pino, E. M. de Gouveia and De Lisio, C. and Lopez, R. de los Reyes and De Lotto, B. and de Naurois, M. and De Palma, F. and Del Santo, M. and Delgado, C. and della Volpe, D. and Di Girolamo, T. and Di Giulio, C. and Di Pierro, F. and Di Venere, L. and Doro, M. and Dournaux, J. and Dumas, D. and Dwarkadas, Vikram V. and Diaz, C. and Ebr, J. and Egberts, Kathrin and Einecke, S. and Elsaesser, D. and Eschbach, S. and Falceta-Goncalves, D. and Fasola, G. and Fedorova, E. and Fernandez-Barral, A. and Ferrand, Gilles and Fesquet, M. and Fiandrini, E. and Fiasson, A. and Filipovic, Miroslav D. and Fioretti, V. and Font, L. and Fontaine, Gilles and Franco, F. J. and Freixas Coromina, L. and Fujita, Yutaka and Fukui, Y. and Funk, S. and Forster, A. and Gadola, A. and Lopez, R. Garcia and Garczarczyk, M. and Giglietto, N. and Giordano, F. and Giuliani, A. and Glicenstein, J. and Gnatyk, R. and Goldoni, P. and Grabarczyk, T. and Graciani, R. and Graham, J. and Grandi, P. and Granot, Jonathan and Green, A. J. and Griffiths, S. and Gunji, S. and Hakobyan, H. and Hara, S. and Hassan, T. and Hayashida, M. and Heller, M. and Helo, J. C. and Hinton, J. and Hnatyk, B. and Huet, J. and Huetten, M. and Humensky, T. B. and Hussein, M. and Horandel, J. and Ikeno, Y. and Inada, T. and Inome, Y. and Inoue, S. and Inoue, T. and Inoue, Y. and Ioka, K. and Iori, Maurizio and Jacquemier, J. and Janecek, P. and Jankowsky, D. and Jung, I. and Kaaret, P. and Katagiri, H. and Kimeswenger, S. and Kimura, Shigeo S. and Knodlseder, J. and Koch, B. and Kocot, J. and Kohri, K. and Komin, N. and Konno, Y. and Kosack, K. and Koyama, S. and Kraus, Michaela and Kubo, Hidetoshi and Mezek, G. Kukec and Kushida, J. and La Palombara, N. and Lalik, K. and Lamanna, G. and Landt, H. and Lapington, J. and Laporte, P. and Lee, S. and Lees, J. and Lefaucheur, J. and Lenain, J. -P. and Leto, Giuseppe and Lindfors, E. and Lohse, T. and Lombardi, S. and Longo, F. and Lopez, M. and Lucarelli, F. and Luque-Escamilla, Pedro Luis and Lopez-Coto, R. and Maccarone, M. C. and Maier, G. and Malaguti, G. and Mandat, D. and Maneva, G. and Mangano, S. and Marcowith, Alexandre and Marti, J. and Martinez, M. and Martinez, G. and Masuda, S. and Maurin, G. and Maxted, N. and Melioli, Claudio and Mineo, T. and Mirabal, N. and Mizuno, T. and Moderski, R. and Mohammed, M. and Montaruli, T. and Moralejo, A. and Mori, K. and Morlino, G. and Morselli, A. and Moulin, Emmanuel and Mukherjee, R. and Mundell, C. and Muraishi, H. and Murase, Kohta and Nagataki, Shigehiro and Nagayoshi, T. and Naito, T. and Nakajima, D. and Nakamori, T. and Nemmen, R. and Niemiec, Jacek and Nieto, D. and Nievas-Rosillo, M. and Nikolajuk, M. and Nishijima, K. and Noda, K. and Nogues, L. and Nosek, D. and Novosyadlyj, B. and Nozaki, S. and Ohira, Yutaka and Ohishi, M. and Ohm, S. and Okumura, A. and Ong, R. A. and Orito, R. and Orlati, A. and Ostrowski, M. and Oya, I. and Padovani, Marco and Palacio, J. and Palatka, M. and Paredes, Josep M. and Pavy, S. and Persic, M. and Petrucci, P. and Petruk, Oleh and Pisarski, A. and Pohl, Martin and Porcelli, A. and Prandini, E. and Prast, J. and Principe, G. and Prouza, M. and Pueschel, Elisa and Puelhofer, G. and Quirrenbach, A. and Rameez, M. and Reimer, O. and Renaud, M. and Ribo, M. and Rico, J. and Rizi, V. and Rodriguez, J. and Fernandez, G. Rodriguez and Rodriguez Vazquez, J. J. and Romano, Patrizia and Romeo, G. and Rosado, J. and Rousselle, J. and Rowell, G. and Rudak, B. and Sadeh, I. and Safi-Harb, S. and Saito, T. and Sakaki, N. and Sanchez, D. and Sangiorgi, P. and Sano, H. and Santander, M. and Sarkar, S. and Sawada, M. and Schioppa, E. J. and Schoorlemmer, H. and Schovanek, P. and Schussler, F. and Sergijenko, O. and Servillat, M. and Shalchi, A. and Shellard, R. C. and Siejkowski, H. and Sillanpaa, A. and Simone, D. and Sliusar, V. and Sol, H. and Stanic, S. and Starling, R. and Stawarz, L. and Stefanik, S. and Stephan, M. and Stolarczyk, T. and Szanecki, M. and Szepieniec, T. and Tagliaferri, G. and Tajima, H. and Takahashi, M. and Takeda, J. and Tanaka, M. and Tanaka, S. and Tejedor, L. A. and Telezhinsky, Igor O. and Temnikov, P. and Terada, Y. and Tescaro, D. and Teshima, M. and Testa, V. and Thoudam, S. and Tokanai, F. and Torres, D. F. and Torresi, E. and Tosti, G. and Townsley, C. and Travnicek, P. and Trichard, C. and Trifoglio, M. and Tsujimoto, S. and Vagelli, V. and Vallania, P. and Valore, L. and van Driel, W. and van Eldik, C. and Vandenbroucke, Justin and Vassiliev, V. and Vecchi, M. and Vercellone, Stefano and Vergani, S. and Vigorito, C. and Vorobiov, S. and Vrastil, M. and Vazquez Acosta, M. L. and Wagner, S. J. and Wagner, R. and Wakely, S. P. and Walter, R. and Ward, J. E. and Watson, J. J. and Weinstein, A. and White, M. and White, R. and Wierzcholska, A. and Wilcox, P. and Williams, D. A. and Wischnewski, R. and Wojcik, P. and Yamamoto, T. and Yamamoto, H. and Yamazaki, Ryo and Yanagita, S. and Yang, L. and Yoshida, T. and Yoshida, M. and Yoshiike, S. and Yoshikoshi, T. and Zacharias, M. and Zampieri, L. and Zanin, R. and Zavrtanik, M. and Zavrtanik, D. and Zdziarski, A. and Zech, Alraune and Zechlin, Hannes and Zhdanov, V. and Ziegler, A. and Zorn, J.}, title = {Prospects for Cherenkov Telescope Array Observations of the Young Supernova Remnant RX J1713.7-3946}, series = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, volume = {840}, journal = {The astrophysical journal : an international review of spectroscopy and astronomical physics}, number = {2}, publisher = {IOP Publ. Ltd.}, address = {Bristol}, issn = {0004-637X}, doi = {10.3847/1538-4357/aa6d67}, pages = {14}, year = {2017}, abstract = {We perform simulations for future Cherenkov Telescope Array (CTA) observations of RX J1713.7-3946, a young supernova remnant (SNR) and one of the brightest sources ever discovered in very high energy (VHE) gamma rays. Special attention is paid to exploring possible spatial (anti) correlations of gamma rays with emission at other wavelengths, in particular X-rays and CO/H I emission. We present a series of simulated images of RX J1713.7-3946 for CTA based on a set of observationally motivated models for the gamma-ray emission. In these models, VHE gamma rays produced by high-energy electrons are assumed to trace the nonthermal X-ray emission observed by XMM-Newton, whereas those originating from relativistic protons delineate the local gas distributions. The local atomic and molecular gas distributions are deduced by the NANTEN team from CO and H I observations. Our primary goal is to show how one can distinguish the emission mechanism(s) of the gamma rays (i.e., hadronic versus leptonic, or a mixture of the two) through information provided by their spatial distribution, spectra, and time variation. This work is the first attempt to quantitatively evaluate the capabilities of CTA to achieve various proposed scientific goals by observing this important cosmic particle accelerator.}, language = {en} } @article{delValleMuellerRomero2018, author = {del Valle, Maria Victoria and M{\"u}ller, A. L. and Romero, G. E.}, title = {High-energy radiation from collisions of high-velocity clouds and the Galactic disc}, series = {Monthly notices of the Royal Astronomical Society}, volume = {475}, journal = {Monthly notices of the Royal Astronomical Society}, number = {4}, publisher = {Oxford Univ. Press}, address = {Oxford}, issn = {0035-8711}, doi = {10.1093/mnras/stx2984}, pages = {4298 -- 4308}, year = {2018}, abstract = {High-velocity clouds (HVCs) are interstellar clouds of atomic hydrogen that do not follow normal Galactic rotation and have velocities of a several hundred kilometres per second. A considerable number of these clouds are falling down towards the Galactic disc. HVCs form large and massive complexes, so if they collide with the disc a great amount of energy would be released into the interstellar medium. The cloud-disc interaction produces two shocks: one propagates through the cloud and the other through the disc. The properties of these shocks depend mainly on the cloud velocity and the disc-cloud density ratio. In this work, we study the conditions necessary for these shocks to accelerate particles by diffusive shock acceleration and we study the non-thermal radiation that is produced. We analyse particle acceleration in both the cloud and disc shocks. Solving a time-dependent two-dimensional transport equation for both relativistic electrons and protons, we obtain particle distributions and non-thermal spectral energy distributions. In a shocked cloud, significant synchrotron radio emission is produced along with soft gamma rays. In the case of acceleration in the shocked disc, the non-thermal radiation is stronger; the gamma rays, of leptonic origin, might be detectable with current instruments. A large number of protons are injected into the Galactic interstellar medium, and locally exceed the cosmic ray background. We conclude that under adequate conditions the contribution from HVC-disc collisions to the galactic population of relativistic particles and the associated extended non-thermal radiation might be important.}, language = {en} } @article{AbramowskiAharonianBenkhalietal.2018, author = {Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Akhperjanian, A. G. and Anguener, E. O. and Backes, M. and Balzer, A. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Birsin, E. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Bulik, T. and Carr, J. and Casanova, Sabrina and Chakraborty, N. and Chalme-Calvet, R. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Chretien, M. and Colafrancesco, S. and Cologna, G. and Condon, B. and Conrad, J. and Couturier, C. and Cui, Y. and Davids, I. D. and Degrange, B. and Deil, C. and deWilt, P. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dubus, G. and Dutson, K. and Dyks, J. and Dyrda, M. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Espigat, P. and Farnier, C. and Fegan, S. and Feinstein, F. and Fernandes, M. V. and Fernandez, D. and Fiasson, A. and Fontaine, G. and Foerster, A. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Grudzinska, M. and Hadasch, D. and Haeffner, S. and Hahn, J. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hillert, A. and Hinton, J. A. and Hofmann, W. and Hofverberg, P. and Hoischen, Clemens and Holler, M. and Horns, D. and Ivascenko, A. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, F. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katz, U. and Kerszberg, D. and Khelifi, B. and Kieffer, M. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Krayzel, F. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Lohse, T. and Lopatin, A. and Lorentz, M. and Lu, C. -C. and Lui, R. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Menzler, U. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mora, K. and Moulin, Emmanuel and Murach, T. and de Naurois, M. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Opitz, B. and Ostrowski, M. and Oya, I. and Panter, M. and Parsons, R. D. and Arribas, M. Paz and Pekeur, N. W. and Pelletier, G. and Petrucci, P. -O. and Peyaud, B. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reichardt, I. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Romoli, C. and Rosier-Lees, S. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Salek, D. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seyffert, A. S. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stinzing, F. and Stycz, K. and Sushch, I. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tluczykont, M. and Trichard, C. and Tuffs, R. and Valerius, K. and van der Walt, J. and van Eldik, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and Weidinger, M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Zywucka, N.}, title = {Detailed spectral and morphological analysis of the shell type supernova remnant RCW 86}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {H E S S Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201526545}, pages = {7}, year = {2018}, abstract = {Aims. We aim for an understanding of the morphological and spectral properties of the supernova remnant RCW 86 and for insights into the production mechanism leading to the RCW 86 very high-energy gamma-ray emission. Methods. We analyzed High Energy Spectroscopic System (H.E.S.S.) data that had increased sensitivity compared to the observations presented in the RCW 86 H.E.S.S. discovery publication. Studies of the morphological correlation between the 0.5-1 keV X-ray band, the 2-5 keV X-ray band, radio, and gamma-ray emissions have been performed as well as broadband modeling of the spectral energy distribution with two different emission models. Results. We present the first conclusive evidence that the TeV gamma-ray emission region is shell-like based on our morphological studies. The comparison with 2-5 keV X-ray data reveals a correlation with the 0.4-50 TeV gamma-ray emission. The spectrum of RCW 86 is best described by a power law with an exponential cutoff at E-cut = (3.5 +/- 1.2(stat)) TeV and a spectral index of Gamma approximate to 1.6 +/- 0.2. A static leptonic one-zone model adequately describes the measured spectral energy distribution of RCW 86, with the resultant total kinetic energy of the electrons above 1 GeV being equivalent to similar to 0.1\% of the initial kinetic energy of a Type Ia supernova explosion (10(51) erg). When using a hadronic model, a magnetic field of B approximate to 100 mu G is needed to represent the measured data. Although this is comparable to formerly published estimates, a standard E-2 spectrum for the proton distribution cannot describe the gamma-ray data. Instead, a spectral index of Gamma(p) approximate to 1.7 would be required, which implies that similar to 7 x 10(49)/n(cm-3) erg has been transferred into high-energy protons with the effective density n(cm-3) = n/1 cm(-3). This is about 10\% of the kinetic energy of a typical Type Ia supernova under the assumption of a density of 1 cm(-3).}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2018, author = {Abdalla, Hassan E. and Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Akhperjanian, A. G. and Andersson, T. and Anguener, E. O. and Arakawa, M. and Arrieta, M. and Aubert, P. and Backes, M. and Balzer, A. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Capasso, M. and Carr, J. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Coffaro, M. and Colafrancesco, S. and Cologna, G. and Condon, B. and Conrad, J. and Cui, Y. and Davids, I. D. and Decock, J. and Degrange, B. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Domainko, W. and Donath, A. and Dutson, K. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Eger, P. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Foerster, A. and Funk, S. and Fuessling, M. and Gabici, S. and Gajdus, M. and Gallant, Y. A. and Garrigoux, T. and Giavitto, G. and Giebels, B. and Glicenstein, J. F. and Gottschall, D. and Goyal, A. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hervet, O. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Janiak, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jogler, T. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Kolitzus, D. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Krueger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lees, J. -P. and Lefaucheur, J. and Lefranc, V. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitche, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Oettl, S. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poon, H. and Prokhorov, D. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Richter, S. and Rieger, F. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Salek, D. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schuessler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Settimo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Simoni, R. and Sol, H. and Spanier, F. and Spengler, G. and Spies, F. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Stycz, K. and Sushch, I. and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Wale, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zabalza, V. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zywucka, N. and Bamba, A. and Fukui, Y. and Sano, H. and Yoshiike, S.}, title = {A search for new supernova remnant shells in the Galactic plane with HESS}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {H E S S Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730737}, pages = {23}, year = {2018}, abstract = {A search for new supernova remnants (SNRs) has been conducted using TeV gamma-ray data from the H.E.S.S. Galactic plane survey. As an identification criterion, shell morphologies that are characteristic for known resolved TeV SNRs have been used. Three new SNR candidates were identified in the H.E.S.S. data set with this method. Extensive multiwavelength searches for counterparts were conducted. A radio SNR candidate has been identified to be a counterpart to HESS J1534-571. The TeV source is therefore classified as a SNR. For the other two sources, HESS J1614-518 and HESS J1912 + 101, no identifying counterparts have been found, thus they remain SNR candidates for the time being. TeV-emitting SNRs are key objects in the context of identifying the accelerators of Galactic cosmic rays. The TeV emission of the relativistic particles in the new sources is examined in view of possible leptonic and hadronic emission scenarios, taking the current multiwavelength knowledge into account.}, language = {en} } @article{AbdallaAbramowskiAharonianetal.2018, author = {Abdalla, Hassan E. and Abramowski, A. and Aharonian, Felix A. and Benkhali, F. Ait and Ang{\"u}ner, Ekrem Oǧuzhan and Arakawa, M. and Armand, C. and Arrieta, M. and Backes, M. and Balzer, A. and Barnard, M. and Becherini, Y. and Tjus, J. Becker and Berge, D. and Bernhard, S. and Bernloehr, K. and Blackwell, R. and Boettcher, M. and Boisson, C. and Bolmont, J. and Bonnefoy, S. and Bordas, Pol and Bregeon, J. and Brun, F. and Brun, P. and Bryan, M. and Buechele, M. and Bulik, T. and Capasso, M. and Caroff, S. and Carosi, A. and Casanova, Sabrina and Cerruti, M. and Chakraborty, N. and Chaves, R. C. G. and Chen, A. and Chevalier, J. and Colafrancesco, S. and Condon, B. and Conrad, J. and Davids, I. D. and Decock, J. and Deil, C. and Devin, J. and deWilt, P. and Dirson, L. and Djannati-Atai, A. and Donath, A. and Dyks, J. and Edwards, T. and Egberts, Kathrin and Emery, G. and Ernenwein, J. -P. and Eschbach, S. and Farnier, C. and Fegan, S. and Fernandes, M. V. and Fiasson, A. and Fontaine, G. and Funk, S. and Fuessling, M. and Gabici, S. and Gallant, Y. A. and Garrigoux, T. and Gate, F. and Giavitto, G. and Glawion, D. and Glicenstein, J. F. and Gottschall, D. and Grondin, M. -H. and Hahn, J. and Haupt, M. and Hawkes, J. and Heinzelmann, G. and Henri, G. and Hermann, G. and Hinton, J. A. and Hofmann, W. and Hoischen, Clemens and Holch, T. L. and Holler, M. and Horns, D. and Ivascenko, A. and Iwasaki, H. and Jacholkowska, A. and Jamrozy, M. and Jankowsky, D. and Jankowsky, F. and Jingo, M. and Jouvin, L. and Jung-Richardt, I. and Kastendieck, M. A. and Katarzynski, K. and Katsuragawa, M. and Katz, U. and Kerszberg, D. and Khangulyan, D. and Khelifi, B. and King, J. and Klepser, S. and Klochkov, D. and Kluzniak, W. and Komin, Nu. and Kosack, K. and Krakau, S. and Kraus, M. and Kruger, P. P. and Laffon, H. and Lamanna, G. and Lau, J. and Lefaucheur, J. and Lemiere, A. and Lemoine-Goumard, M. and Lenain, J. -P. and Leser, Eva and Lohse, T. and Lorentz, M. and Liu, R. and Lopez-Coto, R. and Lypova, I. and Malyshev, D. and Marandon, V. and Marcowith, Alexandre and Mariaud, C. and Marx, R. and Maurin, G. and Maxted, N. and Mayer, M. and Meintjes, P. J. and Meyer, M. and Mitchell, A. M. W. and Moderski, R. and Mohamed, M. and Mohrmann, L. and Mora, K. and Moulin, Emmanuel and Murach, T. and Nakashima, S. and de Naurois, M. and Ndiyavala, H. and Niederwanger, F. and Niemiec, J. and Oakes, L. and Odaka, H. and Ohm, S. and Ostrowski, M. and Oya, I. and Padovani, M. and Panter, M. and Parsons, R. D. and Pekeur, N. W. and Pelletier, G. and Perennes, C. and Petrucci, P. -O. and Peyaud, B. and Piel, Q. and Pita, S. and Poireau, V. and Prokhorov, D. A. and Prokoph, H. and Puehlhofer, G. and Punch, M. and Quirrenbach, A. and Raab, S. and Rauth, R. and Reimer, A. and Reimer, O. and Renaud, M. and de los Reyes, R. and Rieger, F. and Rinchiuso, L. and Romoli, C. and Rowell, G. and Rudak, B. and Rulten, C. B. and Sahakian, V. and Saito, S. and Sanchez, D. A. and Santangelo, A. and Sasaki, M. and Schlickeiser, R. and Schussler, F. and Schulz, A. and Schwanke, U. and Schwemmer, S. and Seglar-Arroyo, M. and Seyffert, A. S. and Shafi, N. and Shilon, I. and Shiningayamwe, K. and Simoni, R. and Sol, H. and Spanier, F. and Spir-Jacob, M. and Stawarz, L. and Steenkamp, R. and Stegmann, Christian and Steppa, Constantin Beverly and Sushch, I. and Takahashi, T. and Tavernet, J. -P. and Tavernier, T. and Taylor, A. M. and Terrier, R. and Tibaldo, L. and Tiziani, D. and Tluczykont, M. and Trichard, C. and Tsirou, M. and Tsuji, N. and Tuffs, R. and Uchiyama, Y. and van der Walt, D. J. and van Eldik, C. and van Rensburg, C. and van Soelen, B. and Vasileiadis, G. and Veh, J. and Venter, C. and Viana, A. and Vincent, P. and Vink, J. and Voisin, F. and Voelk, H. J. and Vuillaume, T. and Wadiasingh, Z. and Wagner, S. J. and Wagner, P. and Wagner, R. M. and White, R. and Wierzcholska, A. and Willmann, P. and Woernlein, A. and Wouters, D. and Yang, R. and Zaborov, D. and Zacharias, M. and Zanin, R. and Zdziarski, A. A. and Zech, Alraune and Zefi, F. and Ziegler, A. and Zorn, J. and Zywucka, N. and Enokiya, R. and Fukui, Y. and Hayakawa, T. and Okuda, T. and Torii, K. and Yamamoto, H.}, title = {HESS J1741-302: a hidden accelerator in the Galactic plane}, series = {Astronomy and astrophysics : an international weekly journal}, volume = {612}, journal = {Astronomy and astrophysics : an international weekly journal}, publisher = {EDP Sciences}, address = {Les Ulis}, organization = {NANTEN Collaboration HESS Collaboration}, issn = {1432-0746}, doi = {10.1051/0004-6361/201730581}, pages = {8}, year = {2018}, abstract = {The H.E.S.S. Collaboration has discovered a new very high energy (VHE, E > 0.1 TeV) gamma-ray source, HESS J1741-302, located in the Galactic plane. Despite several attempts to constrain its nature, no plausible counterpart has been found so far at X-ray and MeV/GeV gamma-ray energies, and the source remains unidentified. An analysis of 145-h of observations of HESS J1741-302 at VHEs has revealed a steady and relatively weak TeV source (similar to 1\% of the Crab Nebula flux), with a spectral index of Gamma = 2.3 +/- 0.2(stat) +/- 0.2(sys), extending to energies up to 10 TeV without any clear signature of a cut-off. In a hadronic scenario, such a spectrum implies an object with particle acceleration up to energies of several hundred TeV. Contrary to most H.E.S.S. unidentified sources, the angular size of HESS J1741-302 is compatible with the H.E.S.S. point spread function at VHEs, with an extension constrained to be below 0.068 degrees at a 99\% confidence level. The gamma-ray emission detected by H.E.S.S. can be explained both within a hadronic scenario, due to collisions of protons with energies of hundreds of TeV with dense molecular clouds, and in a leptonic scenario, as a relic pulsar wind nebula, possibly powered by the middle-aged (20 kyr) pulsar PSR B1737-30. A binary scenario, related to the compact radio source 1LC 358.266+0.038 found to be spatially coincident with the best fit position of HESS J1741-302, is also envisaged.}, language = {en} }